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Abstract. A best rank-R approximation of an order-3 tensor or three-way array may not
exist due to the fact that the set of three-way arrays with rank at most R is not closed. In this
case, we are trying to compute the approximation results in diverging rank-1 terms. We show that
this phenomenon can be seen as a three-way generalization of approximate diagonalization of a
nondiagonalizable (real) matrix. Moreover, we show that, analogous to the matrix case, the limit
point of the approximating rank-R sequence satisfies a three-way generalization of the real Jordan
canonical form. Recently, it was shown how to obtain the limit point and its three-way Jordan
form for R < min(/,J, K) and groups of two or three diverging rank-1 terms, where I X J x K
is the size of the array. We extend this to groups of four diverging rank-1 terms and show that
R > min(/, J, K) is possible as long as no groups of more than min(7, J, K) diverging rank-1 terms
occur. We demonstrate our results by means of numerical experiments.
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1. Introduction. In the context of low-rank approximations of real order-3 ten-
sors or three-way arrays, we present a three-way generalization of the real Jordan
canonical form of square matrices with real eigenvalues. In section 1.1, we consider
the problem of approximate diagionalization of a real nondiagonalizable matrix. This
problem does not have an optimal solution, but the limit point of the approximating
sequence of diagonalizable matrices has real eigenvalues and satisfies the real Jordan
form. Also, the approximating sequence features diverging rank-1 terms. In sec-
tion 1.2, we discuss an analogous situation in low-rank approximation of three-way
arrays. The best rank-R approximation to a given array may not exist and, as a
result, the approximating sequence of rank-R arrays features diverging rank-1 terms.
The limit point of the rank- R sequence satisfies a three-way generalization of the real
Jordan canonical form.

1.1. Approximate diagonalization of a real matrix. Consider the following
problem. Define the set of diagonalizable R x R matrices as

(1.1) Smat — (Y e REXB | Y = AC; A7},

where A € RF*E and C; € RF*® is diagonal. Note that Y € S%8 is diagonalized
as A"YYA. Let || - || denote the Frobenius norm (i.e., the square root of the sum of
squares). We define for Z € REXf

(1.2) Minimize ||Z — Y]] subject to Y € Spat,
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—mat

(1.3) Minimize ||Z — Y]] subject to Y eSSy ,
where 5‘1‘;“ denotes the closure of Sp* in REXE je.. the union of the set itself and
its boundary points. We prove the following result.

THEOREM 1.1. Consider problem (1.2) with generic Z € RT*® having some
complex eigenvalues. Then the following hold:

(i) for R > 2, the set SE* is not closed;

(ii) problem (1.2) does not have an optimal solution;

(iii) let the sequence (A("),an)) converge to an optimal solution X of problem
(1.3). Corresponding to each pair of complex eigenvalues of Z, the limit of

A™ has a pair of proportional columns, and the limit of an) has a pair of
identical diagonal entries. As n — oo, the corresponding rank-1 terms have
unbounded norm, but for each pair the norm of the sum of the rank-1 terms
is bounded.
Proof. See section 2 for the proof. d
The fact that Z € R®*% has some complex eigenvalues is equivalent to Z ¢ ?2“
As we will see in section 2, an optimal boundary point X of problem (1.3) can be
written as X = PJP~!, with P € REXE containing the principal vectors, and
J € REX% ig the block diagonal real Jordan canonical form of X. The diagonal blocks
of J = blockdiag(J1,...,J,) are either 1 x 1 or 2 x 2 and of the form J; = [)Ej ;j},
with A\; € R. Hence, each 2 x 2 diagonal block has two identical real eigenvalues
and only one associated eigenvector. Instead of the diagonal C; in the set SE?' the
boundary point X has the block diagonal Jordan form J, with each block J; in sparse
canonical form.
In the following, we will refer to PJP~! as the real Jordan canonical form if
diagonal block j has size d; x d; and satisfies J; = A\; € R if d; = 1, and

A L0 -0
0 A :
(1.4) J; = Lo if d; > 2,
: EE |
L O - 0 A

with A\; € R. Hence, PJP~! has real eigenvalues but is not diagonalizable if
max(d;) > 2. For more details and a proof of the Jordan canonical form, see [26,
sections 3.1 and 3.2].

1.2. Low-rank tensor approximations. Tensors of order n are defined on the
outer product of n linear spaces, Sy, 1 < £ < n. Once bases of spaces Sy are fixed, they
can be represented by n-way arrays. For simplicity, tensors are usually assimilated
with their array representation. Note that a two-way array is a matrix. The entry
Yijk of an I x J x K three-way array ) is in row ¢, column j, and frontal slice k. The
kth frontal slice Y of ) is an I x J matrix.

For n > 3, a generalized rank and related decomposition of an n-way array was
introduced in 1927 [23], [24]. Around 1970, the same decomposition was reintroduced
in psychometrics [5] and phonetics [20] for component analysis of n-way data arrays.
It was then named Candecomp and Parafac, respectively. In this paper, we only
consider the case n = 3 and real-valued three-way arrays and decompositions. Fitting
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a three-way Candecomp/Parafac (CP) decomposition with R components to a given
three-way array Z is equivalent to trying to find a best rank-R approximation of
Z. Here, the rank (over the real field) of Z is defined as the smallest number of
(real) rank-1 arrays whose sum equals Z. A three-way array has rank 1 if it is the
outer product of three vectors, i.e., J) = ao b oc. This means that ) has entries
Yijk = a;bjci. Formally, we define tensor rank as

R
(1.5) rank()) :min{R | y:Z(aTobrocT)} .

r=1
Let Sg(1,J, K) denote the set of I x J x K arrays with rank at most R, i.e.,

(1.6) Sr(I, J,K) ={Y € R"K | rank(Y) < R}.

For finding a best rank-R approximation of an array Z € RI*J/xK

following minimization problems:

, we consider the

(1.7) Minimize ||Z — )| subject to YeSr(l,J,K),
(1.8) Minimize ||Z —Y||  subjectto Y& Sgr(l,J,K),

where Sg(1,J, K) denotes the closure of Sg(I,J, K) in R”*/*K "and || - || denotes the
Frobenius norm. For Z ¢ Sg(I,J, K), a best rank-R approximation (if it exists) is
a boundary point of Sg(I,J, K) and an optimal solution of both problem (1.7) and
problem (1.8). A best rank-R approximation is found by an iterative algorithm updat-

ing the vectors a,,b,,c., r = 1,..., R, in the approximating rank-R decomposition
Y = Zle(ar o b, oc,). The rank-R approximation is denoted as (A,B, C), with
A =[a;|...|ag], B=[by|...|bg], and C = [cy]|...|cg] being the component matri-

ces. The most well-known iterative algorithm for finding a best rank- R approximation
is alternating least squares (ALS), in which alternatingly one component matrix is
updated given the other two component matrices. Each such step is a multiple re-
gression problem. In the following, we refer to this ALS algorithm as CP ALS. For
an overview and comparison of algorithms, see [25], [57], [7].

The rank-R decomposition Zle(ar ob, oc,) and the more general Tucker3 [58]
decomposition

R P
(1.9) Zzzgwq(sr otpouy)

r=1p=1q=1

can be seen as three-way generalizations of principal component analysis for matrices.
They can be used for exploratory component analysis of three-way data. Real-valued
applications are in psychology [33], [30] and chemometrics [46]. Complex-valued appli-
cations are in, e.g., signal processing and telecommunications research [44], [45], [16].
Here, the decompositions are mostly used to separate signal sources from an observed
mixture of signals. In scientific computing, the n-way rank-R decomposition is used
to approximate a function f(z1,...,z,) on a grid by products of n one-dimensional
functions. Computations on f can be done faster on the approximation; see [2] and
[19]. The four-way rank-R decomposition describes the basic structure of fourth-order
cumulants of multivariate data on which a lot of algebraic methods for independent
component analysis (ICA) are based [6], [14], [13], [8]. A general overview of applica-
tions of tensor decompositions can be found in [31], [1].
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An attractive feature of the rank- R decomposition (A, B, C) is that the columns of
A B, C are unique up to scaling and simultaneous permutation under mild conditions
[34], [54], [41], [28], [9], [51].

Unfortunately, the set Sgr(I,J, K) may not be closed for R > 2, and problem
(1.7) may not have an optimal solution because of this [17]. In such a case, trying
to compute a best rank-R approximation yields a rank-R sequence converging to an
optimal solution X" of problem (1.8), where X is a boundary point of Sg(I, J, K) with
rank(X) > R. As a result, while running the iterative algorithm, the decrease of
[|Z — V|| becomes very slow, and some (groups of) columns of A, B, and C become
nearly linearly dependent, while their norms increase without bound [36], [32], [22].
This phenomenon is known as “diverging CP components” or “degenerate solutions,”
but we will refer to it as diverging rank-1 terms. Needless to say, diverging rank-1
terms should be avoided if an interpretation of the rank-1 terms is needed. Formally,

a group of diverging rank-1 terms corresponds to an index set D C {1,..., R} such
that
(1.10) laf™ o b oc™|| = 00,  forallre D,
(1.11) while Z (@™ o b{™ o clM) is bounded ,
reD

where the superscript (n) denotes the nth update of the iterative algorithm. In
practice and in simulation studies with random data Z, groups of diverging rank-
1 terms are such that the corresponding columns of A, B, and C become nearly
proportional. Other forms of linear dependency are possible but exceptional [56].
Diverging rank-1 terms were first reported and described by [21]. For examples of
(A, B, C) with diverging rank-1 terms, see [47], [55], [53].

There are few theoretical results on nonexistence of a best rank-R approximation
for a specific array Z. It is known that 2 x 2 x 2 arrays of rank 3 do not have a
best rank-2 approximation [17], and conjectures on I x J x 2 arrays are formulated
and partly proven in [49]. In simulation studies with random Z, diverging rank-1
terms occur very often [47], [49], [48], [53]. Although diverging rank-1 terms may also
occur due to a bad choice of starting point for the iterative algorithm [40], [50], if
trying many random starting points does not help, then this is strong evidence for
nonexistence of a best rank-R approximation.

The above implies an analogy with the problem of approximate diagonalization
of a matrix, as dicussed in section 1.1. In fact, we argue that nonexistence of a best
rank-R approximation of a three-way array can be seen as a three-way generalization
of Theorem 1.1.

First, we introduce some notation. We use Vo = (S, T,U) - Y to denote the
multilinear matrix multiplication of an array Y € RI*/*E with matrices S (I x I),
T (J2 x J), and U (K3 x K). The result of the multiplication is an Iy x Jy X K» array
Y> with entries

I J K
2
(1.12) y’L(j]Z: = ZZZS" tip Ukq Yrpg »
r=1p=1q=1

where sy, tjp, and ugq are entries of S, T, and U, respectively. Using this notation,
the Tucker3 decomposition (1.9) can be written as (S, T, U) -G, where the R x P x Q
array G has entries gr,q. Analogously, the rank-R decomposition Zle(ar ob,oc,)
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can be written as (A, B, C)-Zg, where Zg is the R x R X R array with entries i,,.,. = 1
and zeros elsewhere. Hence, Ty is a three-way generalization of the identity matrix
Ir.

Next, we return to the analogy with section 1.1. For the slices Yi of V €
Sr(I, J, K), the rank-R decomposition can be written as

(1.13) Y. =AC,BT, k=1,...,K,

where Cy, is a diagonal matrix with row k of C as its diagonal. Hence, Y € Sr(R, R, K)
implies Y, Y; ' = AC,C; ' A~! for k # [ (assuming Y, is nonsingular). If A,B,C
have full column rank, then an array ) = (A, B, C)-Zy in Sg(1, J, K) is diagonalized
as (AT, BT, C") .Y = Ty, with A" denoting the pseudoinverse of A.

The main topic of this paper is the limit point X of an approximating rank-R
sequence in case a best rank-R approximation does not exist. Since X is an optimal
solution of problem (1.8), one could obtain X" directly by solving this problem instead
of trying to compute a best rank-R approximation. So far, this is only possible for
R = 2 [42] and for I x J x 2 arrays [55], [52], and we have no general algorithm
to solve problem (1.8). Recently, a different approach to obtain X' was proposed in
[53]. Suppose one tries to compute a best rank-R approximation and this results in
diverging rank-1 terms and one is convinced that no best rank- R approximation exists.
In that case, [53] shows that X can be obtained by fitting a decomposition (S, T, U)-G
to Z, with G = blockdiag(Gy, ..., G»,) and core block G; of size d; xd; xd; and in sparse
canonical form. Nondiverging rank-1 terms have an associated core block with d; = 1,
and core blocks with d; > 2 are the limit of a group of d; diverging rank-1 terms.
Initial values for fitting (S, T, U)-G to Z are obtained from the approximating rank-R
sequence. The numbers m and dy,...,d,, are also obtained from the approximating
rank-R sequence. For R > 3, simulation studies suggest that these numbers cannot
be obtained from Z directly [47], [48].

The method of [53] is limited to R < min(/, J, K') and max(d;) < 3. In this paper,
we extend this to R > min(7, J, K) but max(d;) < min(Z, J, K), and max(d;) < 4.
Also, we argue that the decomposition of the limit point X = (S, T,U) - G with
G = blockdiag(Gy, . . ., Gm) can be seen as a three-way generalization of the real Jordan
canonical form. This then completes the analogy with the problem of approximate
diagonalization of a matrix in section 1.1.

Together with [53], the method described in this paper eliminates the problems of
diverging rank-1 terms that occur when a best rank-R approximation does not exist.
The matrices S, T, U in the decomposition of X generally have low condition numbers.
The core blocks G; are in sparse canonical form. As a result, the decomposition of
X may be interpretable. Alternatively, when appropriate, a decomposition of X into
fewer rank-1 terms or higher-rank terms may be computed.

This paper is organized as follows. In section 2, we consider the problem of ap-
proximate diagonalization of a matrix and prove Theorem 1.1. Also, we show that an
optimal boundary point X satisfies a real Jordan canonical form. In section 3, we dis-
cuss in more detail the method of [53] to obtain the limit X of a sequence of diverging
rank-1 terms. It is pointed out that the method still works if max(d;) < min(Z, J, K).
Also, the inclusion of groups of d; = 4 diverging rank-1 terms is discussed. In sec-
tion 4, we demonstrate the extended method in a simulation study. Finally, section 5
contains a discussion of our findings.

We denote vectors as x, matrices as X, and three-way arrays as X. Entry x;j
of X is in row 4, column j, and frontal slice k. We use ® to denote the Kronecker
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product, and ® denotes the (columnwise) Khatri-Rao product, i.e., for matrices X
and Y with R columns, XOY = [x;®y1]...|xr®yr]. The transpose of X is denoted
as XT. We refer to an I x J matrix as having full column rank if its rank equals J,
and as having full row rank if its rank equals I. We refer to the multilinear matrix
multiplication (Ir,I;,U)-X with U nonsingular as a slicemiz of X. A block-diagonal
three-way array is denoted as X = blockdiag(X1,...,X,,), where the X; have size
d; x d; x d;, and the diagonal (x;;;, ¢ = 1,...,n) of X consists of the diagonals of the
blocks.

2. Approximate diagonalization of a matrix. Below, we prove Theorem 1.1.
Also, at the end of this section, we show that the limit point X of an approximating
sequence of diagonalizable matrices has a real Jordan canonical form.

First, we prove (i) of Theorem 1.1. Let X = diag(Js,1,1,...,1) be a block-
diagonal R x R matrix with one 2 x 2 diagonal block

(2.1) le[é H

followed by R — 2 ones on the diagonal. Then X has eigenvalue 1 with multiplicity
R. The associated eigenvectors are ey, es,...,er, where e; denotes the jth column
of Ir. Hence, X has only R — 1 linearly independent eigenvectors, which implies
X ¢ Smat. A sequence Y™ € S%2 such that Y™ — X is as follows. Let Y =

diag(I\™,1,1,...,1), with

my |1 1
(2.2) Ji _[0 1+n1}'
Then Y™ has eigenvalue 1 with multiplicity R—1 and eigenvalue 14+n~'. Moreover,
Y (™) has R linearly independent eigenvectors e1, ne; + e, es, . ..,er. Hence, Y(") €

Spat for all n. This shows that X ¢ SH? is a boundary point of Sp*. Therefore,
the set SPa* is not closed. This proves (i).

Next, we prove (ii). Let Z € RE*f be generic and have some complex eigenvalues.
This implies that the eigenvalues of Z are distinct. Instead of considering problem
(1.2), we first solve problem (1.3). We denote an optimal solution of (1.3) as X. The
real Schur decomposition [18, section 7.4.1] of Z is Z = Q.R.Q! with Q, € RF*%
orthonormal, and R, € R®*® block upper triangular with only 1 x 1 and 2 x 2
diagonal blocks. Since det(Z — A1r) = det(R, — AIR), the eigenvalues of Z and R,
are indentical. Each 1 x 1 diagonal block of R, is a real eigenvalue of Z, and each
2 x 2 diagonal block of R, has a pair of complex conjugate eigenvalues, that are also
eigenvalues of Z. For a diagonalizable approximation Y of Z, we use the real Schur
decomposition to write Y = QR Q7 with Q € RF*® orthonormal, and R € REXE
upper triangular. We have

(2.3) 1Z-Y|=11Q" Q-R. QI Q - RJ|.

Hence, we must choose Q such that Q7 Q.R.QZ'Q is as upper triangular as possible.
The upper triangular part can be set to zero by chosing R appropriately.

We set Q = Q.U with U = blockdiag(Uy, ..., U,,) having orthonormal diagonal
blocks of sizes 1 x 1 or 2 x 2 matching the sizes of the diagonal blocks of R,. By this
choice, the part below the subdiagonal of QT Q.R.QYQ = UTR,U is zero, and only
2 x 2 subproblems remain, each with one nonzero subdiagonal entry. Next, we show
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how to solve a 2 x 2 subproblem. By choosing a 2 x 2 diagonal block U; and a 2 x 2
upper triangular matrix R;, we need to minimize ||U;‘FR;Z)Uj —R;||, where R;Z) is a
2 x 2 diagonal block of R, with complex eigenvalues. As above, the upper triangular
part of U;‘-FRg»Z)Uj can be set to zero by chosing R; appropriately. Hence, we focus

on chosing U; such that the square of the (2,1) entry of U;‘-FR;Z)UJ» is minimized. Let
(2.4)

2 a b ~(z —-b a cos(ar) sin(«
R<,>:{ ] R§>:[ ] UJ_:[ (@) ()]’

J c d —-d ¢ —sin(a) cos(a)

where we need ﬁg»z) below, and the form of Uj; follows from orthonormality. The
(2,1) entry of U;‘-FR;Z)UJ» equals

25) (sin(e) cosfa) R () ) = sin(a) cos(e) sym®7) () ).

cos(a) cos(a)

where

(26)  symRY) =R+ R))/2= { <a__2>/2 (a_cd)ﬂ]
T

The « that minimizes the square of (2.5) is such that the vector (sin(a) cos(a))” is

an eigenvector of the smallest (in absolute value) eigenvalue of Sym(Rﬁz))

Below, we show that for an optimal «, the diagonal entries of U?R; )Uj are
identical, and the (1,2) entry is nonzero. This implies that R; has two identical real
eigenvalues with only one associated eigenvector and, hence, is not diagonalizable.
Therefore, an optimal solution X of problem (1.3) is a boundary point of SE?* but
does not lie in the set itself. It then follows that problem (1.2) does not have an
optimal solution, which proves (ii).

The entries of U?R;-Z)Uj are equal to

(1,1) = a cos*(a) — (b + ¢) sin(a) cos(a) + d sin?(a),
(2,2) = d cos®(a) + (b + ¢) sin(a) cos(a) + a sin?(a),
(1,2) = b cos*(a) + (a — d) sin(a) cos(a) — ¢ sin?(a),
(2,1) = ¢ cos*(a) + (a — d) sin(a) cos(a) — b sin?(a).

Let f(a) denote the expression for (2,1) in (2.
equal to zero yields 2 f(«) f'(a) = 0. Since R
(2,1) entry of UfR;Z)Uj cannot be zero. Hence, f(a) # 0 and f'(a) = 0 must hold
for an optimal . We obtain

(2.7) f'(@) = =2 (b+ ¢) sin(a) cos(a) + (a — d) (cos?(a) — sin*(a)) = 0.

It can be verified that (1,1) — (2,2) equals the expression in (2.7), which is zero.
Hence, we have (1,1) = (2,2). Note that (1,1) +(2,2) = (a + d). Hence, the diagonal
entries (and eigenvalues) of R; are (a + d)/2, which is the real part of the complex
eigenvalues of Rg-z) in (2.4). Also, we have (1,2) = (2,1) + (b — ¢). Hence, (1,2) =0

implies that (2,1) = ¢ — b is the smallest (in absolute value) eigenvalue of sym(ﬁg»z));

). Setting the derivative of (f(a))?
) has two complex eigenvalues, the

’\O'l

see just below (2.6). The eigenvalues of sym(ftg-z)) in (2.6) are given by

c—=bEt\/(b+c)?+ (a—d)?

(2.8) .
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If this is equal to ¢ — b, then sym(f{§z)) has an eigenvalue zero. Since (2,1) =c—b is
its smallest (in absolute value) eigenvalue, it follows that (2,1) = ¢ —b = 0. However,
as argued just above (2.7), the entry (2,1) being zero implies real eigenvalues for

Rg-z), which is a contradiction. (Alternatively, one can verify that b = ¢ implies real

eigenvalues for Rgz)
proof of (ii).

Next, we prove (iii). As shown above, the limit point X has a pair of identical real
eigenvalues with only one associated eigenvector for each pair of complex conjugate
eigenvalues of Z. The real eigenvalues of Z are distinct (since Z is generic) and are also
eigenvalues of X. Let Y™ ¢ Smat converge to X. Then, for large n, the eigendecom-

in (2.4)). Hence, the (1,2) entry is nonzero. This completes the

position Y™ = AMC{(AM)~1 will feature nearly identical pairs of eigenvalues
on the diagonal of an) and corresponding nearly proportional eigenvectors in the
columns of A, Finally, we consider the corresponding pairs of rank-1 terms. Let
B(™ = (A(M)~L, The rank-1 term s is given by c'2 al™ (b{")7, where ¢\ denotes
entry (s, s) of C{™ vector al™ denotes the sth column of A™ and vector (b{™)7 de-
notes the sth row of B, Suppose cgz) ~ cgl) and agn) ~ agn). Then the norms of bg")
and b§") are increasing as n increases, while b{" ~ —btn) such that ||c§’;) al™ (bgn))T—i—
™ al™ (b{"™)T|| remains bounded. This completes the proof of Theorem 1.1.

Note that if Z is not generic, then we include the possibility that some of its
real eigenvalues may be identical with less associated eigenvectors. As a result, more
diverging rank-1 terms (possibly in larger groups) may occur in the decomposition
Y™ = A(")C:(L")(A("))’l. For generic Z with some complex eigenvalues, the diverg-
ing rank-1 terms occur in pairs only and are related to the pairs of complex conjugated
eigenvalues of Z.

As stated above, under the assumptions of Theorem 1.1, an optimal boundary
point X has some distinct real eigenvalues, and some pairs of identical real eigenvalues
with only one associated eigenvector. This implies that X = PJP~! with J =
blockdiag(Jy,...,J.) being the real Jordan canonical form of X. The Jordan blocks

J; are either 1 x 1 and equal to a distinct real eigenvalue of X, or 2 x 2 and of the
1

form [ A, ] with the pair of identical real eigenvalues on the diagonal.

3. Low-rank tensor approximations: From diverging rank-1 terms to
a three-way Jordan canonical form. Here, we describe and extend the approach
and method of [53] to obtain the limit point X of a sequence of rank-R approximations
in case a best rank-R approximation does not exist. In section 3.1, we describe
the method of [53], which is limited to R < min(/,J, K) and max(d;) < 3, with
I x J x K the size of the arrays. In sections 3.2 and 3.3, we discuss an extension to
R > min(I, J, K) with max(d;) < min(I, J, K) and max(d;) < 4. In section 3.2, we
present theoretical results on the limit point X and its decomposition in block terms.
In section 3.3, we discuss changes in the algorithm of [53] due to the extension of the
method.

3.1. How to obtain the limit point of the approximating rank-R se-
quence. In the matrix problem of approximate diagonalization, the groups of di-
verging rank-1 terms are directly related to Jordan blocks and the corresponding
principal vectors of the limiting boundary point X. Associated with the limit of a
group of two diverging rank-1 terms are two principal vectors (which are linearly in-
dependent) and a 2 x 2 Jordan block, which is not diagonalizable. For an I x I x 2
array Z with no best rank-R approximation, something similar happens. For the
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approximating rank-R sequence ), the matrix YoY7 1 converges to XQXfl of the
limiting boundary point X. Here, Y and X}, are the kth I x I frontal slices of ) and
X, respectively. The matrix YoY | ! has real eigenvalues and is diagonalizable (due
to rank()) < R), while XoX ;' has real eigenvalues but is not diagonalizable [47],
[49], [55]. Hence, XX * satisfies the real Jordan form P JP~!. In almost all cases,
the limiting array X of a group of d; diverging rank-1 terms corresponds to a d; x d;
Jordan block of J. It can be shown that rank(X;) > d; [47], [55]. Below, we describe
how this relation between groups of diverging components and their limit points has
been generalized in [53] to I x J x K arrays with R < min(7, J, K).

Suppose Z ¢ Sg(I,J, K) and no best rank-R approximation of Z exists. After
running an iterative algorithm, we obtain (A, B, C) featuring diverging rank-1 terms.
Let the R columns of (A,B,C) be ordered such that A = [A1]|...|Ay], B =
Bi]...|By],C=[Ci]|...|Cyl, with A;, B;, C; having d; columns and defining
a group of d; diverging rank-1 terms if d; > 2, and a nondiverging rank-1 term if
d; = 1. We have R = Z;.n:ldj. Let V; = (A;,B;,Cj) - Iy, be the I x J x K
array defined by the d; rank-1 terms in (A;,B;,C;). Hence, rank(Y;) < d; and
Yy = Z;”:l Y;. Related to the observations above, the following assumption is made
in [53].

Assumption 1. Each array )Y;, defined by a group of d; diverging rank-1 terms,
converges to an array X; with rank(X;) > d;. O

It follows that the limit X; can be approximated arbitrarily closely by rank-d;
arrays. Hence, &; is a boundary point of Sy, (I, .J, K) with rank larger than d;.

Analogously to the Jordan blocks and principal vectors associated with the limit
of a group of diverging rank-1 terms for I x I x 2 arrays, the limits X; have a similar
decomposition. In [17], the following result is proven for d; = 2.

LemMA 3.1. For a group of d; = 2 diverging rank-1 terms, the limit X; can be
written as X; = (S;,T;,U;) - G; with S;, T;, U; of rank 2, and 2 x 2 X 2 array G,

given by
1 0(0 1
(3.1) [01‘00}.

We have rank(X;) = rank(G;) = 3. O

In (3.1), we denote the 2 x 2 x 2 array G; with 2 x 2 slices G; and G2 as [G1 | G2].
Lemma 3.1 shows that the limit &; of a group of two diverging rank-1 terms has
associated vectors in S;, T;, U; and a core block G; in sparse canonical form. For a
group of d; = 3 diverging rank-1 terms, the following result is proven in [53].

LEMMA 3.2. For a group of d; = 3 diverging rank-1 terms, and min([, J, K) > 3,
almost all limits X; with multilinear rank (3,3, 3) can be written as X; = (S;,T;,U;)-
G; with S, T;, U; of rank 3, and 3 x 3 x 3 array G; given by

(3.2)

OO =

0 0|0
1 010
0 1|0

O O ¥

0/0 0 1
«[0 0 0],
0/0 0 0

where * denotes a nonzero entry. We have rank(X;) = rank(gG;) = 5. O

The multilinear rank of an I x J x K array is defined as follows. A mode-j vector
of an I x J x K array is defined as a vector that is obtained by varying the jth
index and keeping the other two indices fixed. Hence, a mode-2 vector has size J.
The mode-j rank of the array is the rank of the set of mode-j vectors. This concept
generalizes the row rank and column rank of matrices. The multilinear rank is defined
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as the triplet (mode-1 rank, mode-2 rank, mode-3 rank). Note that, unlike the matrix
case, the mode-j rank and mode-k rank can be different for j # k, and they can be
different from the rank of the array [35].

The notion “almost all” in Lemma 3.2 means that exceptional cases of A} lie in
a subset of the boundary with lower dimensionality. The requirement of multilinear
rank (3,3, 3) is a regularity condition. In both cases, no exceptions were found in the
simulation study of [53].

In [53], only the limits of groups of two and three diverging rank-1 terms were
considered. In this paper, we also consider groups of four diverging rank-1 terms. We
prove the following result.

LEMMA 3.3. For a group of d; = 4 diverging rank-1 terms, and min(I, J, K)
almost all limits X; with multilinear rank (4,4, 4) can be written as X; = (S;, T},
G; with S, T;, U; of rank 4, and 4 x 4 x 4 array G; given by

>4,
U;)-

1 00 0|0 = 0 0[O0 0 % 0/0 001
(3.3) 01 0 0[O0 0 %= 0|0 0O *={0 0 0 O
' 001 0{0 0O *=|00O0O0[0O0O0O0]”’
000 1j0 00 0|0 0O O0O|0O0TO0TO
where * denotes a nonzero entry. We have rank(X;) = rank(G;) > 7.

Proof. See the appendix for the proof. 0
To sum up, for groups of no more than four diverging rank-1 terms, the limit
process according to Assumption 1 and Lemmas 3.1, 3.2, 3.3, is as follows:

y: (AlaBlacl) + (A27B2702) + -+ (Am,Bm,Cm)

X = (SlleaUl) . gl + (SZaT27U2) . gQ + -+ (vavaUm) : gm

Here, (A;,B;,C;) contains d; rank-1 terms which are diverging for d; > 2, and
nondiverging for d; = 1. The limit points X; = (S;,T;,U;) - G; have rank larger
than d; if d; > 2, and rank 1 if d; = 1. The decomposition of the overall limit point
X is an example of a decomposition into block terms, introduced in [10], [11], [12],
where the block terms are (S;,T;, U;) - G;. The decomposition of X = 3" | X; can
also be written as a Tucker3 decomposition (1.9) with an R x R x R block diagonal
core array G = blockdiag(Gy,...,Gn), i.e., X =(S,T,U)-G = Z;’;l(sj, T;,Uj)-G;,
with S = [S1]...|Swm], T = [T1|...|Tw], and U = [Uy | ... |U,]. The block
diagonal core array G is a three-way generalization of the real Jordan canonical form
for matrices. The limit process above shows that X can be approximated arbitrarily
closely by a sequence of rank-R arrays. Hence, X € Sr(I,.J, K). Moreover, if || Z—)||
converges to the minimum of problem (1.8), then X is a boundary point of Sg(I, J, K)
with rank larger than R, and it is an optimal solution of problem (1.8).

Below, we give an outline of the algorithm of [53] to obtain X and its decompo-
sition, where we also include groups of d; = 4 diverging rank-1 terms. For d; = 2
diverging rank-1 terms, a decomposition of the limit &} is given by Lemma 3.1. For
d; = 3 or d; = 4, we assume the following.

Assumption 2. The limit &; of an array ), defined by a group of d; = 3 or
d; = 4 diverging rank-1 terms, can be written as &X; = (S;, T;,U;) - G; with S;, T},
U; of rank d;, and G; equal to the canonical form (3.2) for d; = 3, and equal to (3.3)
for dj =4. |

Input of the algorithm is the data array Z € R!*/*X and approximating rank-R
decomposition Y = (A, B, C) - Zr with groups of two, three, or four diverging rank-1
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terms. The limit point X and its decomposition X = (S, T, U) - G are obtained by
fitting the decomposition (S, T, U)-G to £ with initial values obtained from (A, B, C).
An outline of the algorithm is as follows.
1. Identify the groups of diverging rank-1 terms in A, B, C.
2. Simultaneously reorder the columns of A, B, C such that A = [A1 ] ... |A,],
B=[Bi|...|By],C=[Ci]...|Cy], with Aj, B;, C; having d; columns
and corresponding to a group of d; diverging rank-1 terms if d; > 2, and a
nondiverging rank-1 term if d; = 1. We have Zznzl d; = R.
3. (Block SGSD) For each Y; = (A;,B;,C;) - Z,, compute ); = (gj,’i‘j,ﬁj) .
’g}-, where gj, ’Tj, I~Jj are columnwise orthogonal, and éj € Sq,(dj,dj,dy)
has all frontal slices upper triangular. This yields the block SGSD YV =
> e85, T, Uy) - Gy
4. (Initial values) From the block SGSD in step 3, obtain initial values S;O),

Tg_o)’ Ugo)’ QJ(-O), j=1,...,m, for fitting the decomposition in block terms
2=1(85,T;, U ) - Gj to Z.

5. Using the initial values in step 4 and the ALS algorithm of [29], fit the (con-
strained Tucker3) decomposition (S,T,U) -G = 377" (S;, T;,U;) - G; to Z
with

1 ifdj =1,
canonical form (3.1) if d; =2,
canonical form (3.2) if d; =3,
canonical form (3.3) if d; =4,

G =

where S, T, U and the nonzero entries of core G = blockdiag(Gy,...,G,,) are
free parameters.
6. Normalize (most of) the nonzero core entries of each G; to one.
The output of the algorithm is then the optimal boundary point X in terms of the
closest decomposition in block terms X = 377, (S;,T;, Uj) - G; to Z. For examples
of the application of the algorithm, see [53, section 4]. Next, we describe each step in
some more detail.

In step 1, we use the following criterion to identify groups of diverging rank-1
terms. Recall that in a group of diverging rank-1 terms, the corresponding columns
of A, B, C, when normed to length 1, are nearly identical up to sign. Other forms of
linear dependency are possible but exceptional [56]. We put rank-1 terms s and ¢ in
the same group of diverging rank-1 terms if

(3.4) ‘( (8, a0) ) ( (bs, b) ) ( {cay 1) )‘ > 0.90,
lasllzfacdz) \TbalzMbeliz) \lesllz ez

where (v,w) = vI'w, and ||v|2 = vI'v. The left-hand side of (3.4), without absolute
value, is equal to the cosine of the angle between the vectorized rank-1 terms s and
t, where the latter are a; ® by ® cs and a; ® b; ® c¢, respectively. The critical value
0.90 is somewhat arbitrary. In the simulation study of [53] the value of 0.95 was used
successfully in combination with the CP ALS algorithm with convergence criterion
le-9. In the simulation study in section 4, we demonstrate that the critical value
0.90 also yields good results.

Since step 2 speaks for itself, we move on to step 3. For an I x J x K array ), the
simultaneous generalized Schur decomposition (SGSD) is given by Y, = Q. Ry Qf,
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k=1,...,K, where Q, (I x R) and Q; (J x R) are columnwise orthonormal and
Ry are R X R upper triangular, k = 1,..., K. Hence, Y = (Qq., Qp,Ix) - R, where R
is the R x R x K array with frontal slices Ry, k = 1,..., K. In the block SGSD in
step 3, each array )); satisfies a variant of SGSD in which a slicemix is also applied.
Details on how to compute the block SGSD are given in section 3.3.

Next, we discuss step 4. How to obtain the initial values for d; € {1,2,3} is
explained in [53, section 2.2]. The case d; = 4 is described in section 3.3. Step 5 of
the algorithm speaks for itself.

In Step 6 of the algorithm, the nonzero entries of the resulting blocks G; are
normalized to one if possible. For d; = 4 this procedure is the same as for d; € {2, 3}
in [53]. We premultiply the slices of G; by (ng ))*1, and normalize the resulting
second, third, and fourth slices. Postmultiply S; by ng), and U; by the inverse
slice normalizations. Note that in slices Géj ) and ng ) only one nonzero entry can be
normalized to one.

3.2. Theoretical results for R > min(I,J, K). Here, we discuss results
on the border rank and rank of the limit point X, and on the uniqueness of its
decomposition.

As stated in section 3.1, since we assume a best rank-R approximation does not
exist, it follows that rank(Xx’) > R. Hence, X is a boundary point of Sg(I,J, K)
with rank larger than R. In [53, Lemma 3.4(b)], rank(X’) > R was proven using the
assumption of R < min(/, J, K). Next, we consider the border rank of X. The latter
is defined as in [4], [17]:

(3.5)
brank(X') = min{R : X can be approximated arbitrarily well by arrays of rank R }.

Hence, if brank(X) = R, then X € Sg(I,J,K) but X ¢ Sg_1(I,J,K). In [53,
Lemma 3.4(a)], it is proven that brank(X) = R using the assumption of R <
min(7, J, K). The following lemma shows that this assumption is not necessary.

LEMMA 3.4. Let Z ¢ Sgp_1(I,J,K) and let X be an optimal solution of problem
(1.8). Then brank(X) = R.

Proof. The proof is analogous to showing that a best rank-R approximation (if
it exists) has rank R if rank(Z) > R [17, Lemma 8.2] [53, Lemma 2.2]. If Z €
Sr(I,J,K), then brank(Z) = R and X = Z is the optimal solution of problem
(1.8). Next, assume Z ¢ Sg(I,J, K). Without loss of generality we suppose that
brank(X) = R — 1. Let Y™ € Sg_(I, J, K) with Y(") — X. Since Z ¢ Sg(I, J, K),
there is a nonzero entry (i,j,k) of Z2 — X. Let Y be all-zero, except for i =
Zijk — Tjk. Hence, 37 has rank 1. Tt follows that (™ + 55 — X + 37 Hence,
X =X+Y e Sg(I,J,K). Moreover, ||Z — X|| < ||Z — X||, which contradicts the
fact that X is an optimal solution of problem (1.8). Therefore, brank(X) = R. Note
that brank(X) > R is not possible because X € Sg(I,J,K). This completes the
proof. a

Note that brank(X) = R ensures that X cannot be approximated arbitrarily
closely by less than R rank-1 terms. Hence, of the R rank-1 terms constituting array
Y, all terms make a contribution to the convergence to X.

Next, we consider the relation between the rank of the block diagonal G and
rank(X). In [27], it is proven that rank(G) = 377" rank(G;) if d; > 3 for at most one
j. Under the assumption that S, T, U have rank R, which implies R < min(/, J, K),
we have rank(X') = rank(G). For R > min(/, J, K), we only have rank(&’) < rank(G).
We can show rank equality when there is one group of d; = 2 diverging rank-1 terms.
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In that case, rank(G;) = 3 by Lemma 3.1, rank(G) = R + 1 by the result of [27], and
rank(X) < R+ 1 together with rank(X) > R implies rank(X) = R+ 1.

Numerical experiments show that often rank(X) < rank(G) when R > min(Z, J, K).
For example, we ran the CP ALS algorithm on a random 4 x 4 x 4 array with R =6
rank-1 terms and obtained diverging rank-1 terms in all (and many) runs. In each
run that was not suboptimal, there were two groups of two diverging rank-1 terms:
di =2,dy =2,ds =1, dy = 1. The result of [27], together with Lemma 3.1, implies
rank(G) = 3+ 3 + 1+ 1 = 8. However, after obtaining X (using the method of [53]
with the changes described in sections 3.1 and 3.3) and running CP ALS with R =7
on X, we obtained a perfect fit. Hence, rank(X) = 7 in this case.

As afinal topic in this section, we discuss uniqueness of the block terms (S;, T;, U;)-
G; in the decomposition of X'. The block terms are unique if in alternative decompo-
sitions of & with block terms of the same sizes, the ambiguities occur only within the
block terms and in the order of the block terms. In [53, Lemma 3.5], it is shown that
the block terms are unique if only groups of two diverging rank-1 terms occur, i.e.,
if max(d;) = 2. In the proof, it is assumed that S, T, U have rank R, which implies
R <min(/, J, K).

Numerical experiments are inconclusive about the uniqueness of the block terms
when R > min(I, J, K). For all examples we tried, fitting a decomposition in block
terms to X with the same block sizes d; (using the ALS algorithm of [29]), resulted
either in the same block terms as in the original decomposition or in diverging block
terms. In the latter cases, all but two block terms (one with d; = 1 and one with
d; = 2) were equal to the original blocks terms, the ALS algorithm showed slow
convergence, and the two different block terms, when reshaped into vectors f; and f;,
featured (F7'f;)/(\/f1fs \/fI'f;) close to —1.

Hence, we have obtained no nonequivalent alternative decompositions in block
terms of the same sizes. If in some case the block terms in the decomposition X
are not unique, the obtained optimal boundary point X is still of value and may be
decomposed into rank-1 terms or different block terms when appropriate.

3.3. Changes in the algorithm for R > min(I,J, K) and d; = 4. Here,
we discuss the changes in the algorithm of [53] that are needed to incorporate groups
of four diverging rank-1 terms. Also, we argue that the method also works for R >
min(7, J, K) under the restriction max(d;) < min(7, J, K). First, we discuss step 3
of the algorithm outlined in section 3.1. We show that the block SGSD can still be
computed if not R < min(J, J, K) but still max(d;) < min(Z,J, K). We add the
following assumption.

Assumption 3. The largest group of diverging rank-1 terms satisfies max(d;) <
min(7, J, K). O

Existence of the block SGSD in step 3 follows from the fact that each group of
d; diverging rank-1 terms defines an array ); € Sg;([,J, K), and Lemma A.2 (in
the appendix) applied to each Y;. Note that we use max(d;) < min(Z,J, K) here.
Next, we show how to obtain V; = (S;,T;,U;) - G;. This part closely follows [53,
section 2.1].

If dj = 1, then we set gj = Aj, Tj = Bj, ﬁj = Cj, and gj = 1. Next,
suppose d; > 2. Let A; = gj RY) be a QR-decomposition of A;, with gj (I x dj)
columnwise orthonormal, and jo ) (d; x dj) upper triangular. Let B; = ’i‘j ngj ) be a
QL-decomposition of B;, with ’Tj (J x dj) columnwise orthonormal, and Lz(;j) (d;j x dj)
lower triangular. Then the matrix form (1.13) of the rank-d; decomposition of J; can
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be written as
36) A;CcYBT =5, RYCY @HT)TT =S, RYTT, k=1,.. K,

where C,gj ) denotes the d; x d; diagonal matrix with row k£ of C; as its diagonal. The
right-hand side of (3.6) defines an SGSD of V;. Hence, ); = (gj, Tj, Ix)-R;, where
R; is the d; x dj x K array with upper triangular frontal slices R,(Cj).

By Lemma A.1 (in the appendix), it follows that there exists ﬁj (K xdj) column-
wise orthonormal such that R; = (I4;,1s,,U;) - G;, with G; € Sy, (dj,d;,d;). The
matrix ﬁj can be obtained as follows. For a d x d upper triangular matrix R, let

vech(R) denote the (d(d + 1)/2)-vector obtained by stacking the entries in the upper
triangular part of R above each other. Let

(3.7) H; = [vech(RY)) | ... | vech(R)].

If the singular value decomposition of H; is given by H; = Q1 D QZ, where the d; x d;
diagonal matrix D contains the singular values, then we may take U; = (Q;)T, where
Q; is the pseudoinverse of Q2. Note that the rank of H; is equal to the mode-3 rank
of R;, and is less than or equal to d; by R; = (Idj,Idj,ij) - G;. Hence, it follows
that V; = (gj, Tj, fJJ) . g], and step 3 is possible under Assumption 3.

Next, we consider step 4 of the algorithm outlined in section 3.1, and discuss
how to obtain the initial values for a group of d; = 4 diverging rank-1 terms. We

write G; = [GY) |GY) |G | G)]. We premultiply the slices of G, by (GY)~1, and
postmultiply §j by égj ). We obtain

1 0 0 O|ax e hy ja2|laz ez hy jz|as es hyg js
001 0|0 0 ¢c2 g2/0 0 e3 g3{0 0 c4 ga
0 00O 1|0 O O do|O O O d3|0 0 0 dy

By assumption, a, =~ b, = ¢, = d, for p = 2,3,4 (see the proof of Lemma 3.3 in
the appendix). Next, we subtract u, = (ap + by, + ¢p + dp)/4 times égj) from él()j)
for p = 2,3,4, and postmultiply ﬁj by the inverse of this slicemix. In éj, we set
ap=b,=cp, =d, =0for p=2,3,4.

By assumption, the vectors (e, , fp, gp) are nearly proportional for p = 2, 3,4 (see
the proof of Lemma 3.3 in the appendix). We subtract v, = (e,/e2+ fp/ fa+9p/92)/3
times égj ) from (le()j ) for p = 3,4, and postmultiply ﬁj by the inverse of this slicemix.
In éj, we set e, = fp = gp = 0 for p = 3,4. After this slicemix, the resulting vectors
(hp —vpha , i —vpie) are nearly proportional for p = 3,4 (see the proof of Lemma 3.3
in the appendix). We subtract w = ((hq —v4h2)/(hs—vsha)+ (14 —v4i2)/(is —v3i2))/2
times égj ) from éff ), and postmultiply ﬁj by the inverse of this slicemix. In g], we
set hy —vgho = iy — v4is = 0. The only nonzero entry of Gij) is then the (1,4) entry,
which equals x = (js — v472) — w (J3 — v3j2)-

Next, we subtract y3 = (js — v3j2)/x times Gflj) from ng), and yo = jo/x times
Gflj ) from Géj ), and postmultiply INJj by the inverse of this slicemix. This sets the
(1,4) entries of Géj) and ng) to zero. Then we subtract z = ho/(hs — vshg) times
Géj ) from Géj ), and postmultiply INJj by the inverse of this slicemix. This sets the
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(1,3) entry of ng ) to zero. We obtain the following form:

(3.9)
1 0 0 0[0 e2 O 0|0 O hg—ushy 0 0 0 0 =z

é’_ o 01 0 010 0 fQ iz 0 0 0 i3 — U3i2 0 0 0 O
7710 0 1 0[{0 0 0 g2/0 O 0 0 0 0 00
0 00 1j0 0 0O 0|0 O 0 0 0 0 00

Finally, as in the proof of Lemma 3.3 in the appendix, we transform (3.9) such that it
has the same pattern of zeros as the canonical form (3.3). In each slice, we subtract
i2/ fo times column 3 from column 4. We postmultiply T; by the inverse of this trans-

formation. Next, we add i2/ f> times row 4 to row 3 in each slice. We postmultiply S;
by the inverse of this transformation. Finally, to set the (1,4) entry of ng ) to Z€ero,
we subtract t = —(ia/ f2)(hs — vshe)/z times Gflj) from ng), and postmultiply ﬁj
by the inverse of this slicemix. This yields the initial value Jj in (3.9) with i = 0,
which has the same pattern of zeros as the canonical form (3.3). It follows that our

starting values are
-1

1 00 0
o _a &6 1010 0

;7 =8;& 0 0 1 da/fs ’
0 0 0 1

(3.10) I

10 0 0
©_~ [ 01 0 0
T =T 0 0 1 0
0 0 —ig/fe 1

The initial matrix U§O) is obtained as U;O) = I~Jj M, with

M = MMy M M M v

and
(3.11) ) )
1 00 0 1 0 00 10 0 0
| w2 10 0 o 1 00 o1 0 o0
M, = —u3010’M2_0—0310’M3_0010
_—u4001_ _O—v401 0 0 —w 1
(3.12) ) ]
100 0 10 0 0 1 00 0
1010 —y o1 -2 0 o 10 0
Mi=119 0 1 —ys |’ Ms=100 1 0| Me=|g 01 —t
000 1 | 10 0 1 000 1
It follows that U'” = U; M, with
1 0 0 0
w1 z Y2 + tz
(3.13) M = us vz 14 v32 vsyo + Y3 +t + tvsz

ug V4 vez+w 14 v4ys +wys +tugz + tw

Step 5 of the algorithm is as in [53]. The ALS algorithm of [29] does not require the
compound matrices S, T, U to have full column rank R, nor to have more rows than
columns.
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4. Simulation study. Here, we demonstrate the method outlined in section 3
in a simulation study. For sizes 4 x 4 x 4, 10 x 4 x 4, 10 x 10 x 4, 10 x 10 x 10,
100 x 30 x 4, and 6 x 6 x 6, we generate 50 random arrays Z and use the CP ALS
algorithm to try to compute a best rank-R approximation of Z. For the first four
sizes we use R = 6. For the 100 x 30 x 4 arrays we use R = 8, and for the 6 x 6 x 6
arrays we use R = 9. Hence, for five of the six sizes we have R > min(/, J, K), and
for the 4 x 4 x 4 and 6 x 6 x 6 arrays we even have R > max([, J, K).

For each array, we run CP ALS 10 times with random starting values, and keep
the solution (A,B, C) with smallest error ||Z — ))||2. We use convergence criterion
1e-9 in CP ALS. If (A, B, C) features diverging rank-1 terms in groups of no more
than four rank-1 terms, then we apply our method to obtain the optimal boundary
point X' and its decomposition in block terms X = 377, (S;,T;, Uj) - G;. We fit
this decomposition to Z as a constrained Tuckerd decomposition by using the ALS
algorithm of [29] with convergence criterion 1e-9. The groups of diverging rank-1
terms are identified by criterion (3.4) with critical value 0.90.

In Table 1 below, we report the frequencies of solutions with and without diverging
rank-1 terms, and also the sizes of the groups of diverging rank-1 terms. As can be
seen, diverging rank-1 terms occur for 84, 86, 84, 70, 84, and 94 percent of the arrays.
For each array size, a wide variety of number and sizes of groups of diverging rank-1
terms occurs.

Next, we apply our method to all cases of diverging rank-1 terms in Table 1
except those with a group of five or more diverging rank-1 terms. To evaluate the
performance of the method, we compare the error term ||Z — V|| (for the rank-R
sequence )) to [|Z — X||? (for the limit point X). We report the maximal percentage
of relative error decrease

_ 2 _ _ 2
(4.1) diff = 100 (”Z =112 X”).

12 = VIP?

Also, we consider the condition numbers of the matrices S, T, U in the decomposition
of the limit point X. We report the maximal condition number that occurred and
the number of times max(cond(S), cond(T), cond(U)) is larger than 100. Since the
limit point X is closer to Z than ), we expect diff to be positive and small. Also, we
expect the condition numbers of S, T, U to be relatively small. For arrays Z where
diff is negative or condition numbers larger than 100 occur, we rerun the CP ALS
algorithm with 20 different random starting values, and again apply our method if
diverging rank-1 terms occur. After this procedure, four cases with diff < 0 and 19
cases with condition numbers larger than 100 still remained. The cases with diff < 0
could be resolved by either rerunning CP ALS or assigning a diverging rank-1 term
as nondiverging or vice versa. In 16 of the 19 cases with large condition numbers, the
triple cosine between two rank-1 terms not in the same (or any) group of diverging
rank-1 terms was relatively high (around 0.75 or 0.8). In six of these cases, rerunning
CP ALS resulted in a better solution with a different configuration of diverging rank-1
terms. In the other three of the 19 cases with large condition numbers (all 10 x 4 x 4
arrays), we discovered that the first slice égj) of a core block ,C'Z withd; =3 ord; =4
in the block SGSD (step 3 of the algorithm in section 3), is nearly singular. We use
the nonsingularity of éiﬂ ) in the proofs of the canonical forms (3.2) and (3.3), and to
obtain initial values in step 4 of the algorithm. These three cases may have a different
decomposition of the limit X’ and are discarded.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



ALWIN STEGEMAN

08 ¢ |z ¢ |z 1 1 € ¢ |2 1 € ot | 2| € | 6| 9xoxo
os || 1] 1 ¢ 1] 1 ¢ |¥ 1 P 8 |v1| & | & |#%xo0exo01
08 € ¢ |6 1 L er| e | 9 |orxorxor
08 € el 1 oL z ot |er| & | 9| ¥xorxor
08 1|y ¢ |e¢ v let| L || 9| ¥x¥xor
05 1 |z L |o 9 loz| 8 |l9| ¥x¥x¥
[re1y [ 2] et [ e[ etv | v ] e+e | etotote | etete | ote | € | atotete | eteta | ete | ¢ | ouou [[of | I xr X7

"D49290 12 [SWid) T-yuns burbionipuou (g + g) — Y Ppu» swa) T-yuvs buibioarp omy
Jo sdnoub omy ypm $35DI SUIDIUOD T + T UWNJOI Y] SULLI] T-Yuns bUIbL20IPUOU T — Y PUD SULD] T-yuns burbioaip omy fo dnoib ouo yjum $9SDI SUIDIUOD T, UWNJOD
Y7 fswua] T-yUuDs bubA20LP JNOYJUM SISDD SUIDIUOD ,dUOU, UWNJOD Y[, SUWLd] T-YUDL bUbL20ID JNOYIUM PUD YJM SUOUDUWATOLAAD I -yuns [0 $210UINDALT
1 d19V],

640

dyd-esloseuinol/bio we s mmm//:dny ass ‘yb1iIAdod 1o asuadi| INVIS 01 1381gns uonngLISIY "SYT 6ET ST 62T 01 T/TT/90 Papeojumod

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/11/13 to 129.125.139.145. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

LIMITS OF LOW-RANK TENSOR APPROXIMATIONS 641

TABLE 2
Results of applying the method outlined in section 3 to the cases of diverging rank-1 terms in
Table 1 with groups of no more than four diverging rank-1 terms. The columns contain the maximal
number of iterations needed for fitting the block term decomposition, the mazimal percentage of
relative error decrease, the number of times at least one of S, T, U in the decomposition of the limit
point X has condition number larger than 100, and the mazimal condition number. For each array
size, the results are split up for different sizes of the largest group of diverging rank-1 terms max(d;).

IxJxK ‘ R ‘ max(d;) H max(iter) | max(diff) | #cond>100 | max(cond) H cases ‘

4x4x4 6 2 9534 0.11 0 36.6 26
4x4x4 6 3 3373 0.48 1 115.6 13
4x4x4 6 4 9325 36.66 0 17.3 3
10 x4 x 4 6 2 5581 0.0063 3 310.8 27
10 x 4 x 4 6 3 477 0.0067 0 17.7 8
10 x4 x4 6 4 531 6.84 1 248.8 4
10 x 10 x 4 6 2 442 0.0017 2 347.6 24
10 x 10 x 4 6 3 598 0.0039 1 218.7 12
10 x 10 x 4 6 4 785 1.07 0 33.5 3
10x10x10 | 6 2 95 0.0012 3 125.3 21
10x10x10 | 6 3 139 0.0013 1 135.7 11
10x10x10 | 6 4 443 0.43 2 174.1 3
100 x 30 x4 | 8 2 162 0.0006 1 104.5 27
100 x 30 x4 | 8 3 108 0.0011 1 107.4 10
100 x 30 x4 | 8 4 96 0.0186 0 29.6 3
6xX6x6 9 2 4386 0.0282 2 298.2 21
6XxX6x6 9 3 3037 0.0269 2 284.4 17
6X6x6 9 4 932 4.35 0 41.1 5

The results of applying our method to the cases in Table 1 are given in Table 2.
Apart from diff and condition numbers, we also report the maximal number of it-
erations needed by the ALS algorithm to fit the constrained Tucker3 decomposition
(step 5 of the algorithm outlined in section 3.1). As can be seen, the algorithm does
not need excessively many iterations. The values of diff are all positive and relatively
small, except for some cases with d; = 4. Hence, in all cases the boundary point X’
is closer to Z than ), which is evidence that & is indeed an optimal boundary point.
In almost all cases, the rank-R array ) is very close to the optimal boundary point
X. However, some groups of four diverging rank-1 terms seem to converge to their
limit at a slower rate than groups of two or three diverging rank-1 terms, at least
when using CP ALS. The number of cases with condition numbers larger than 100 is
limited to 20, and the maximal condition numbers are not excessively large.

An anonymous reviewer suggested checking numerically whether the canonical
forms for d; = 3 and d; = 4 indeed have the minimal number of nonzero entries. For
these cases in Table 2, we fitted a decomposition (S;, T, U;) - G; to the limit X} of
the d; € {3,4} diverging rank-1 terms, where G; is equal to the canonical form (3.2)
or (3.3) with one nonzero entry set to zero. For d; = 4, we set either the (1,2,2) or
the (1,3,3) entry to zero. For d; = 3, we set the (2,3,2) entry to zero. For d; = 4,
fitting X; ~ (S;,T;,U;) - G; results in an error sum of squares of at least 0.52. There
is one 6 x 6 x 6 array with error 0.02, but this is an outlier. For d; = 3, we obtain an
error sum of squares of at least 0.61. Hence, it seems that the canonical forms (3.2)
and (3.3) indeed have the minimal amount of nonzero entries.

The results of the simulation study demonstrate that our method works well for
arrays of different sizes, and with R > min(7, J, K) but max(d;) < min(Z, J, K). Also,
the results validate our Assumptions 1 and 2 in all but three cases.
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Compared to the simulation study in [53] for R < min([, J, K') and max(d;) < 3,
the values of diff are slightly larger for d; € {2,3}, and the numbers of iterations to
fit the decomposition in block terms are larger. Also, in [53] no cases of diff < 0 were
encountered. This indicates that cases with R > min(I, J, K') and/or d; = 4 provide
a bigger numerical challenge.

5. Discussion. In this paper, we have extended the method of [53] to obtain the
limit point X of a sequence of rank-R updates with diverging rank-1 terms. Under
the assumption of nonexistence of a best rank-R approximation of the data array Z,
the limit point X is a boundary point of the set of rank-R arrays, has rank larger
than R, and is closest to the data array Z of all (boundary) points in the rank-R
set. As in [53], we obtain X by fitting a decomposition in block terms to Z, where
the initial values are obtained from the configuration of diverging rank-1 terms of
the approximating sequence of rank-R updates. In [53], the method is restricted to
R < min(7, J, K) and max(d;) < 3, where d1,...,d,, are the sizes of the groups of
(non)diverging rank-1 terms. We have proposed and demonstrated an extension to
R > min(I, J, K), max(d;) < min(Z, J, K), and max(d;) < 4. We conjecture that
canonical forms like (3.3) for d; = 4 can be proven for d; > 5 analogous to the proof
of Lemma 3.3.

Nonexistence of a best rank-R approximation can be avoided by imposing con-
straints on the rank-1 terms in (A, B, C). Imposing orthogonality constraints on (one
of) the component matrices guarantees existence of a best rank-R approximation [32],
and the same is true for nonnegative Z under the restriction of nonnegative compo-
nent matrices [38]. Also, [39] show that constraining the magnitude of the inner
products between pairs of columns of component matrices guarantees existence of a
best rank-R approximation. When these constraints are not suitable and diverging
rank-1 terms are encountered, obtaining the limit point of the sequence of rank-R
updates is the best one can hope for.

Not in all applications of low-rank tensor approximations are diverging rank-1
terms considered a problem. For example, in algebraic complexity theory the arbi-
trarily close approximation of X by another array of lower rank is used for fast and
arbitrarily accurate matrix multiplication [3] [4]; see [49, section 1.2] for a discussion.

Theoretically, we have shown that the phenomenon of diverging rank-1 terms
due to nonexistence of a best rank-R approximation can be seen as a three-way
generalization of approximate diagonalization of a nondiagonalizable matrix. In the
latter problem, the approximating sequence of diagonalizable matrices converges to
a nondiagonalizable boundary point X and exhibits diverging rank-1 terms. The
boundary point X satisfies the real Jordan canonical form X = PJP~!, with J =
blockdiag(J1,...,Jm) and each Jordan block J; being the limit of a group of di-
verging rank-1 terms. Analogously, the boundary point X that is the limit of the
approximating sequence of rank-R updates, satisfies a decomposition in block terms
X = (S,T,U) - G, with G = blockdiag(Gi,...,Gn) and each block G; in sparse
canonical form being the limit of a group of diverging rank-1 terms. As such, this de-
composition in block terms is a three-way generalization of the real Jordan canonical
form for matrices.

For a matrix with real eigenvalues, the real Jordan canonical form can be ob-
tained by computing the algebraic multiplicities of the eigenvalues and analyzing
their eigenspaces [26, section 3.2]. For three-way and n-way arrays, eigenvalues and
eigenvectors have also been defined [43] [37]. However, we have not found a clear con-
nection between our three-way generalization of the Jordan canonical form and these
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notions of eigenvectors for three-way arrays. We do have the following analogy of the
d; identical real eigenvalues and only one associated eigenvector of a Jordan block
J;. From Lemma 3.1, the proof of Lemma 3.2 in [53], and the proof of Lemma 3.3
in the appendix, we can conclude the following. Let the limit point &) have SGSD
decomposition X; = (S;,T;, U;)-G;, where G; has size d; x d; x d;, upper triangular
frontal slices, and first slice equal to I4;. Then in almost all cases, each frontal slice of
G, has d; identical real eigenvalues, and the same single associated eigenvector [56].

Note that not all properties of a two-way matrix decomposition need to generalize
to a three-way decomposition. For example, the generalization of the singular value
decomposition to n-way arrays by [15] features orthogonal “singular vectors” in three
modes, has a relation to the mode-j ranks of the array, and an ordered set of “singular
values” can be defined. However, there is no relation with the rank of the array, nor
with diagonalization. The latter two are properties of the rank-R decomposition, but
here the rank-1 terms are not ordered, and there are no orthogonal vectors.

Appendix A. Before presenting the proof of Lemma 3.3, we formulate two lem-
mas. These results are needed in section 3.2 and in the proof of Lemma 3.3.

LEMMA A.1. Let d; <min(I,J,K), and Y; = (S;,T;,U;) - G; with columnwise
orthonormal S; (I xd;), T; (Jxd;), and U; (K xd;). Then Y; € Sq,(I,J,K) if and
only if G; € Sa,(d;,dj,d;), and YV; € Sq,(I,J,K) if and only if G; € Sa,(d;,d;, d;).
Moreover, the representation exists for anyY; € Sd (I,J,K) and any Y; € Sy, (I J, K),
and we may takeS =1y, ifd; =1, T =1y, ifd; = J, andU =14, ifd; =

Proof. See [17, Theorem 5.2]. IZ[

LEMMA A.2. Ford; < rmn(I J, K) and Y; € Sd (I,J,K), it holds that yJ =
(S],TJ,U ) - gJ for some Sj, TJ, UJ columnwise orthonormal, and some g]
Sa,(d;,d;,d;) with all frontal slices upper triangular. Moreover, Y; € Sq,(I,J, K)
if and only if G; € Sa,(d;,d;,d;).

Proof. See [53, Lemma 3.2(b)]. O

Proof of Lemma 3.3. By Lemma A.2, there exist columnwise orthonormal S; Iz Tj,
U such that X; = (S T .U, Pk QJ with QJ € S4(4,4,4) having all frontal slices upper
triangular. By assumption, gJ has multilinear rank (4,4, 4). Also, we have rank(X;) =
rank(gj) > 4. We assume that QJ has a nonsingular slicemix, i.e., (Is,I5,U) - G; has
a nonsingular frontal slice for some nonsingular U. This is true for almost all 53 In
fact, if ,C'Z does not have a nonsingular slicemix, then its upper triangular slices have
a zero on their diagonals in the same position. We apply a slicemix to 53 such that
its first slice is nonsingular. Next, we premultiply the slices of éj by the inverse of its
first slice. Then éj = [égj) | égj) | égj) |é§lj)] is of the form

1 0 0 Of{az e hy jo|as e3 hy jJs|as e hy ja

A1 001 0 0[0 by fo ia|0 by f5 i3] 0 by fi ia
’ 0 01 0 0 0 (6] g2 0 0 C3 gs 0 0 C4 ga
0 00 1|0 O O do|O O O d3|0 0 0 dy

We assume that the upper triangular entries of the last three slices of QJ are nonzero.
This holds for almost all g] By assumption, there exists a sequence Y™ in Sy(I, J, K)
converging to X;. This implies that (S;‘F, T;fr, U;‘F) Y™ converges to (S;‘F, T;fr, Uf)

X; = ’g}-. Without loss of generality, in the remaining part of the proof we consider
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a sequence V(™) in Sy(4,4,4) converging to Q}, where Y™ features four diverging
rank-1 terms.

Since a matrix cannot be approximated arbitrarily well by a matrix of lower
rank, it follows that the approximating sequence Y™ in S4(4,4,4) has multilinear
rank (4, 4,4) and a nonsingular slicemix for n large enough. Moreover, by Lemma A.2
we may assume without loss of generality that J(™ has the form (A.1). We denote
the entries of Y™ with superscript n, i.e., aé”), ... ,j;()") for p = 2,3,4. Hence, Y™ =
(i 1YY 1YY | Y] equals

(A.2)

100 0]al™ e nf g alm e plm im0 alm e B i
0100 0 b M iMoo M g g B g gim
0o010lo0o o0 & g”o o & gdvlo o M g
ooo1lo o o d4d”o o o 4l o o o da"

The proof consists of showing that a nonsingular N exists such that the slicemix
G; = (I4,14,N) - G, is of the canonical form (3.3).

First, we consider the rank-4 decomposition (A(")7 B(™, C(”)) of Y™ which can
be written as in (1.13): Yl(jn) =AM CI()") (B(™M)T, where diagonal matrix C,(,n) has row
p of C(") as its diagonal, p = 1,2,3,4. Since an) = I3, matrices A and B(™ are
nonsingular. Without loss of generality, we set C{"”) = I. Then (A(™)~! = (B(")T
and Yl(jn) =AM CI()") (AM)=1 for p = 2,3, 4. Hence, slices Yén), Yg"), Yfl") have the
same eigenvectors. Moreover, their three eigenvectors are linearly independent, and

their eigenvalues are on the diagonals of Cg”), Cg"), Cfln), respectively. Since Y;(,") has

eigenvalues a,(,n), b,(,n), c,(,n), dl()")7 p = 2,3,4, we obtain

11 1 1
() pm) ) g
A3 C(n): azn 2n 2n n
(A-3) BOBMONNONEQ

RO O ORI
Next, we show that in the limit a, = b, = ¢, = d,, for p = 2,3,4. We only consider
p = 2. The proof for p = 3,4 is completely analogous. From Krijnen, Dijkstra, and
Stegeman [32] we know that A, B™ and C™ converge to matrices with ranks
less than 4. The eigendecomposition Yé") =AM Cén) (A(”))’1 converges to frontal
slice G of G. Hence, the eigenvectors in A converge to those of Go. Suppose A (™)
has a rank-1 limit. Then G2 has only one eigenvector and four identical eigenvalues.
Hence, ag = by = ¢ = dy. For an eigenvalue A of Gg, we define the eigenspace

(A.4) E(\) = {xeR*: Gyx =Ax}.

It holds that A; # A2 implies E(A1) N E(A2) = {0}. Suppose A™ has a rank-2 limit
A = [a; ay a3 a4], where the columns are eigenvectors associated with eigenvalues
ag, ba, ca, da, respectively. Without loss of generality, we assume a3, a4 € span{a;,as},
with a; and ap linearly independent. Suppose as = bs. Then ay € E(dz) N E(a2),
which implies az = dz. Analogously, az € E(c2) N E(az) implies az = co. Hence,
we obtain as = ba = ¢o = do. Next, suppose as # by. Because rank(A) = 2, we
have at most two distinct eigenvalues. If co = as # by = ds, then a; and a3 are
proportional and as and a4 are proportional. Hence, this is a case of two groups of
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two diverging rank-1 terms, and not one group of four diverging rank-1 terms. If
as # by = co = da, then as, a3, a, are proportional, and we have a group of three
diverging rank-1 terms only (i.e., large numbers in three columns of B(™ = (A()~-T
only). Other possibilities for as # be and rank(A) = 2 are analogous. It follows that
if rank(A) = 2, then as = by = c2 = do.

Next, let rank(A) = 3. Without loss of generality, we assume a4 € span{a;,as,as},
with aj, ag, a3 linearly independent. Suppose as = by = co. Then ay € E(dz) N E(as),
which implies a2 = ds, and yields the desired result. Next, suppose ag = by # co. If
d2 = a9, then we have a group of at most three diverging rank-1 terms. If do = co,
then a3 and a4 are proportional, and we have a group of two diverging rank-1 terms
only. If dy # as and dy # ¢, then rank(A) = 4 which is not possible. Next, suppose
that as, ba, co are distinct. Then do must be equal to one of them. Let do = as. Then
a; and a4 are proportional, and we have a group of two diverging rank-1 terms only.
Other possibilities for the equality of some eigenvalues can be treated analogously. It
follows that if rank(A) = 3, then as = b = 3 = ds.

Hence, we have shown that in the limit a, = b, = ¢, = d,, for p = 2,3,4. This
implies that C(™ in (A.3) converges to a rank-1 limit.

As Y™ — G;, we first assume that the eigenvalues a,(,"), bé"), cé"), dé”) are distinct,

p = 2,3,4. It can be verified that the eigenvectors A(™ of Y,(,n) associated with

eigenvalues aén), b,(gn), c,(gn), dé") are, respectively,

1 1 1 1
N 0 u®™ p L0
(A.5) A = 0 0 w® ym |-
0 0 0 =z
with
(A.6) u — (bén) - aén)) o™ — Ign) (Cén) - aén))
e BT T )

(e = ap) (e — b5
e £+ (e = )
) B (@ — ap) + g () — gy — )

(A.7) w™ =

A. (n
(A8) x denom(n, p) ,
a0 = 8@ e - b)
' denom(n’ p) )
Loy (8 — a7y — b — )
denom(n, p) )
and

denom(n, p) = e;mf;”)g,(,") + el()”)il(,”) (dl(,”) - cz()")) + hl()")gl(,") (dl()") - bl()”))

+ 55 (dm — b)) (dlm — ()
Recall that the eigenvectors A(™) are identical for p = 2,3, 4. Next, we show that in the

limit the vectors (ep, fp, gp) are proportional for p = 2,3,4. We prove proportionality
only for the vectors with p = 2 and p = 3. The full proof is completely analogous. We
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write A in terms of p = 3 and compute Yé") =AM Cg") (A()=1 which yields

[ (n ) [ o _p n n T
aé : eé ) <a?n>_b?n)) vt Wi
3 3
(n) (n) [ b5 —ci™ (n)
(AIO) O bQ f3 <b§n)_cgn) V
n n e g
0 0 o5 g5 (<n)d<n))
L0 0 0 s |

Note that the entries in this matrix equal those of Yg") in (A.2). This yields, after
rewriting, the following expressions for U and V("):

hy (e5” —ag”) + (5 f5" — £ e”)

U(n): = h(n)—>h27
(£ = af) :
A(n) ¢ 4(n) (n) n) (n) (n) £(n)
o _ s (A" —by )+ (fs 95 —95 fo) _ i iy

(5" = ")

We know that a, = b, = ¢, = d, for p = 2,3, 4. Hence, the denominators of U™ and
V(") converge to zero, and also their numerators must converge to zero. This implies
that esfa = fseq and fzga = g3 fo. Therefore, the vectors (ep, fp, gp) are proportional
for p = 2,3 when fsf3 # 0, which holds for almost all éj.

So far, we have shown that for ,C'Z in (A.1), ap =bp = ¢, =dp, for p=2,3,4, and
that the vectors (ep, fp, gp) are proportional for p = 2,3,4. We subtract a, times the
first slice of g~j from slice p to obtain an all-zero diagonal in slice p, for p = 2,3, 4.
Next, we subtract e,/es times the second slice from slice p, for p = 3,4. Then we
obtain the following for the last three slices of g~j:

(A.11)
0 e hy j2|0 0 hz—ahy jz—aja|0 0 hyg—PBhy js—Bj2
0 0 f2 ig 0 0 0 i3 — Ozig 0 0 0 i4 — ﬂig
0 0 0 ¢g210 0 0 0 0 0 0 0 ’
0O 0 0 0|0 O 0 0 0 0 0 0

where a = e3 /e and § = e4/es. Below, we show that the vectors (hs —ahg , i35 — avig)
and (hy — Bha , 44 — Big) are proportional. This implies that subtracting (hy —
Bha)/(hs — ahy) times slice three from slice four sets the (1,3) and (2,4) entries of
slice four equal to zero. Slice four then only has its (1,4) entry nonzero (which we
normalize to one), and can be used to set the (1,4) entries of slices two and three
equal to zero. Next, slice three can be used to set the (1,3) entry of slice two equal
to zero. This yields the form

1000062090()}3390001
(A12) 010000f2i2000i300007
0010[/0 0 0 g/00 0 0]/0O00O0T0O0
000 1/0 0 0 0l0OO O 0|0 0O O

with hs = hs — a he, i3 = is — aia, and i = ig — h223/53. In each slice of (A.12), we
subtract 7o / f2 times column 3 from column 4. After this, we add is / f2 times row 4
to row 3 in each slice. We then obtain canonical form (3.3) except for a nonzero entry
(1,4) in slice three. The latter can be removed by using slice four as above.
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Now we show that (hs — ahs , i3 — ais) and (hy — She , i4 — Bis) are proportional
in (A.11). The expression for W in (A.10) equals (after rewriting)
(A.13)
) )+ ) D I D

W(n) = = Jo — j2.
(" = af")

As above, it follows that ezia — esiz + h3ga — gshe = 0 in the limit. We write e3 = aes
and (due to proportionality of (ep, fp, gp) for p = 2,3,4) g3 = ags, and obtain
egiz + h3ga — gsha

(A14) i3 = o = aig+ (92/62) (hg — Ozhg) .

Analogously, when writing A(™ in terms of p = 4 and computing

Y{ = A o (A
we obtain that egio — e2i4 + hygos — gaho = 0 in the limit. We write e, = Ses and
gs = Bg2, and obtain

. i2 + haga — gsh _
(A.15) iy = SazT Mz 0 _ Biz + (g2/€2) (ha — B ha).

€2

From (A14) and (A15) it follows that ig — ()ziz = (92/62)(h3 — Ozhg) and i4 — ﬁiQ =
(g2/€2)(ha — Bha). Hence, we have shown that the vectors (hg — ahs , i3 — aio) and
(hy — Bha , ig — Bia) are proportional.

It remains to consider the cases where the eigenvalues aé"), b]g,"), c]g,"), d,(gn) of Y;()n)
are not distinct, p = 2,3,4. Below, we show that such cases can be left out of
consideration. We only consider p = 2. The cases p = 3 and p = 4 are completely
analogous. If aén) = bén) for n large enough, then we must have eé") = 0 to obtain
four linearly independent eigenvectors of Yén). This is due to the upper triangular
form of Yg") in (A.2). This implies that ez = 0 in the limit, which does not hold for
almost all ’g}-. Analogously, it can be shown that equality of some of the eigenvalues
al™ b8 S dS™ for n large enough implies restrictions on the limit G; which do not
hold for almost all éj. In particular, we have the following implications:

al” =" = ¢y =0,

ad = ¢ = eafo+ o (3 — ba) = 0,
agn) = dg") = e2f2g2 + e2ia (d2 — c2) + haga (d2 — ba)
+ jo (d2 — b2)(d2 —c2) =0,
b =V = fa=0,
bén) = dg") = faga +i2(d2 —c2) =0,
s =di" = g, =0,
af” =" =" = ey = fy=hy =0,

ag") = bé”) = dg") = e3 =0, fogo +ia(d2 —c2) =0, hago +j2(d2 —c2) =0,

af” =" = d” = g2 =0, eafa +ha(c2 —by) = 0, exiz + ja (c2 — by) =0,
bV =l = dY = fy =iy =g, =0,
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Finally, we prove that rank(G;) > 7 when G; equals (3.3). As [40], we use [34,
Corollary 1’, p. 108], which implies

(A.16) rank(G;) > min (rank(u ng) +v ng) +w ng) +x ng))) +ranks(G;)—1,

u#0,v,w,x

with ranks(G;) denoting the mode-3 rank of G;. Using (3.3) yields rank(G;) > 4+4 —
1=7. 0

Acknowledgment. The author would like to thank Lieven De Lathauwer for
providing the first half of the proof of Theorem 1.1(ii).

REFERENCES

(1] E. AcAar AND B. YENER, Unsupervised multiway data analysis: A literature survey, IEEE
Trans. Knowledge Data Engrg., 21 (2009), pp. 1-15.

[2] G. BEYLKIN AND M.J. MOHLENKAMP, Algorithms for numerical analysis in high dimensions,
SIAM J. Sci. Comput., 26 (2005), pp. 2133-2159.

[3] D. Bini, M. CAPOVANI, F. ROMANI, AND G. LoTTI, O(n?-7799) complexity for n xn approzimate
matriz multiplication, Inform. Process. Lett., 8 (1979), pp. 234-235.

[4] D. Bini, G. LotTi, AND F. ROMANI, Approzimate solutions for the bilinear form computational
problem, SIAM J. Comput., 9 (1980), pp. 692-697.

[5] J.D. CARROLL AND J.J. CHANG, Analysis of individual differences in multidimensional scaling
via an n-way generalization of Eckart-Young decomposition, Psychometrika, 35 (1970),
pp. 283-319.

. CoMON, Independent component analysis, a new concept?, Signal Process., 36 (1994),
pp. 287-314.

[7] P. Comon, X. LuciaNi, AND A.L.F. DE ALMEIDA, Tensor decompositions, alternating least
squares and other tales, J. Chemometrics, 23 (2009), pp. 393-405.

[8] P. CoMON AND L. DE LATHAUWER, Algebraic identification of under-determined miztures, in
Handbook of Blind Source Separation: Independent Component Analysis and Applications,
P. Comon and C. Jutten, eds., Academic Press, 2010, pp. 325-366.

[9] L. DE LATHAUWER, A link between the canonical decomposition in multilinear algebra and
stmultaneous matriz diagonalization, STAM J. Matrix Anal. Appl., 28 (2006), pp. 642-666.

[10] L. DE LATHAUWER, Decompositions of a higher-order tensor in block terms—Part I: Lemmas
for partitioned matrices, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1022-1032.

[11] L. DE LATHAUWER, Decompositions of a higher-order tensor in block terms—Part 11: Defini-
tions and uniqueness, STAM J. Matrix Anal. Appl., 30 (2008), pp. 1033-1066.

[12] L. DE LATHAUWER AND D. NION, Decompositions of a higher-order tensor in block terms—
Part III: Alternating least squares algorithms, STAM J. Matrix Anal. Appl., 30 (2008),
pp. 1067-1083.

[13] L. DE LATHAUWER, Algebraic methods after prewhitening, in Handbook of Blind Source Sepa-
ration: Independent Component Analysis and Applications, P. Comon and C. Jutten, eds.,
Academic Press, 2010, pp. 155-178.

(14] L. DE LATHAUWER, B. DE MOOR, AND J. VANDEWALLE, An introduction to independent com-
ponent analysis, J. Chemometrics, 14 (2000), pp. 123-149.

[15] L. DE LATHAUWER, B. DE MOOR, AND J. VANDEWALLE, A multilinear singular value decom-
position, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253-1278.

[16] L. DE LATHAUWER AND J. CASTAING, Tensor-based techniques for the blind separation of DS-
CDMA signals, Signal Process., 87 (2007), pp. 322-336.

[17] V. DE SivA AND L.-H. LiMm, Tensor rank and the ill-posedness of the best low-rank approzi-
mation problem, STAM J. Matrix Anal. Appl., 30 (2008), pp. 1084-1127.

(18] G.H. GorLuB AND C.F. VAN LoaN, Matriz Computations, 3rd ed., John Hopkins University
Press, Baltimore, MD, 1996.

[19] W. HACKBUSCH AND B.N. KHOROMSKI1J, Tensor-product approxzimation to operators and func-
tions in high dimensions, J. Complexity, 23 (2007), pp. 697-714.

[20] R.A. HARSHMAN, Foundations of the Parafac procedure: Models and conditions for an “ex-
planatory” multimodal factor analysis, UCLA Working Papers in Phonetics, 16 (1970),
pp. 1-84.

=)
o

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/11/13 to 129.125.139.145. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

21]

22]
23]
[24]

[25]

[26]
[27]

28]

[29]
[30]
31]

32]

[33]

34]

[35]

[36]

[37]

LIMITS OF LOW-RANK TENSOR APPROXIMATIONS 649

R.A. HArRsHMAN AND M.E. LUNDY, Data preprocessing and the extended Parafac model, in
Research Methods for Multimode Data Analysis, H.G. Law, C.W. Snyder Jr., J.A. Hattie,
and R.P. McDonald, eds., Praeger, New York, 1984, pp. 216-284.

R.A. HARSHMAN, The Problem and Nature of Degenerate Solutions or Decompositions of 3-
Way Arrays, Workshop on Tensor Decompositions, Palo Alto, 2004.

F.L. HircHCOCK, The expression of a tensor or a polyadic as a sum of products, J. Math.
Phys., 6 (1927), pp. 164-189.

F.L. HircHCOCK, Multiple invariants and generalized rank of a p-way matriz or tensor, J.
Math. Phys., 7 (1927), pp. 39-70.

P.K. HopkEg, P. PaaTERO, H. Jia, R.T. Ross, AND R.A. HARSHMAN, Three-way (Parafac)
factor analysis: Examination and comparison of alternative computational methods as
applied to ill-conditioned data, Chemometrics Intell. Lab. Systems, 43 (1998), pp. 25-42.

R.A. HOrN AND C.R. JOHNSON, Matriz Analysis, Cambridge University Press, Cambridge,
1990.

J. JA’JA’ AND J. TAKCHE, On the validity of the direct sum conjecture, SIAM J. Comput., 15
(1986), pp. 1004-1020.

T. JiaNG AND N.D. SIDIROPOULOS, Kruskal’s permutation lemma and the identification of
Candecomp/Parafac and bilinear models with constant modulus constraints, IEEE Trans.
Signal Process., 52 (2004), pp. 2625-2636.

H.A.L. Kiers AND A.K. SMILDE, Constrained three-mode factor analysis as a tool for parameter
estimation with second-order instrumental data, J. Chemometrics, 12 (1998), pp. 125-147.

H.A.L. KiERS AND I. VAN MECHELEN, Three-way component analysis: Principles and illustra-
tive application, Psych. Methods, 6 (2001), pp. 84-110.

T.G. KoLDA AND B.W. BADER, Tensor decompositions and applications, STAM Rev., 51 (2009),
pp. 455-500.

W.P. KRUNEN, T.K. DIJKSTRA, AND A. STEGEMAN, On the non-ezistence of optimal solutions
and the occurrence of “degeneracy” in the Candecomp/Parafac model, Psychometrika, 73
(2008), pp. 431-439.

P.M. KROONENBERG, Applied Multiway Data Analysis, Wiley Series in Probability and Statis-
tics, Wiley-Interscience, Hoboken, NJ, 2008.

J.B. KRUSKAL, Three-way arrays: Rank and uniqueness of trilinear decompositions, with ap-
plications to arithmetic complezity and statistics, Linear Algebra Appl., 18 (1977), pp. 95—
138.

J.B. KRUSKAL, Rank, decomposition, and uniqueness for 3-way and N-way arrays, in Multiway
Data Analysis, R. Coppi and S. Bolasco, eds., North-Holland, NY, 1989, pp. 7-18.

J.B. KRUSKAL, R.A. HARSHMAN, AND M.E. LUNDY, How 3-MFA data can cause degenerate
Parafac solutions, among other relationships, in Multiway Data Analysis, R. Coppi and S.
Bolasco, eds., North-Holland, NY, 1989, pp. 115-121.

L.-H. LM, Singular values and eigenvalues of temsors, multilinear Perron-Frobenius theory,
and spectral hypergraph theory, in Proceedings of the 1st IEEE International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Puerto Val-
larta, Mexico, 2005.

L.-H. Lim AND P. CoMON, Nonnegative approximations of nonnegative tensors, J. Chemomet-
rics, 23 (2009), pp. 432-441.

L.-H. Lim AND P. COMON, Multiarray signal processing: Tensor decomposition meets com-
pressed sensing, C. R. Acad. Sciences Paris Sér. II B Mech., Mécanique, 338 (2010),
pp. 311-320.

P. PAATERO, Construction and analysis of degenerate Parafac models, J. Chemometrics, 14
(2000), pp. 285-299.

J.A. RHODES, A concise proof of Kruskal’s theorem on tensor decomposition, Linear Algebra
Appl., 432 (2010), pp. 1818-1824.

R. Roccr AND P. GIORDANI, A weak degeneracy revealing decomposition for the Cande-
comp/Parafac model, J. Chemometrics, 24 (2010), pp. 57-66.

L. Q1, Eigenvalues and invariants of tensors, J. Math. Anal. Appl., 325 (2007), pp. 1363-1377.

M.D. SIDIROPOULOS, G. GIANNAKIS, AND R. BRO, Blind Parafac receivers for DS-CDMA sys-
tems, IEEE Trans. Signal Process., 48 (2000), pp. 810-823.

N.D. SipirorPoULOS, R. BRO, AND G. GIANNAKIS, Parallel factor analysis in sensor array
processing, IEEE Trans. Signal Process., 48 (2000), pp. 2377-2388.

A. SMILDE, R. BrO, AND P. GELADI, Multi-way Analysis: Applications in the Chemical Sci-
ences, Wiley, Chichester, 2004.

A. STEGEMAN, Degeneracy in Candecomp/Parafac explained for p X p X 2 arrays of rank p+ 1
or higher, Psychometrika, 71 (2006), pp. 483-501.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/11/13 to 129.125.139.145. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

[56]

[57]

- - S T

>

G

ALWIN STEGEMAN

. STEGEMAN, Degeneracy in Candecomp/Parafac explained for several three-sliced arrays with

a two-valued typical rank, Psychometrika, 72 (2007), pp. 601-619.

. STEGEMAN, Low-rank approxzimation of generic p X q X 2 arrays and diverging components

in the Candecomp/Parafac model, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 988-1007.

STEGEMAN, Using the Simultaneous Generalized Schur Decomposition as a Cande-

comp/Parafac algorithm for ill-conditioned data, J. Chemometrics, 23 (2009), pp. 385-392.

. STEGEMAN, On uniqueness conditions for Candecomp/Parafac and Indscal with full column

rank in one mode, Linear Algebra Appl., 431 (2009), pp. 211-227.

. STEGEMAN, The Generalized Schur Decomposition and the Rank-R Set of Real I X J X 2

arrays, preprint, arXiv:1011.3432, 2010.

. STEGEMAN, Candecomp/Parafac: From diverging components to a decomposition in block

terms, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 291-316.

. STEGEMAN AND N.D. SIDIROPOULOS, On Kruskal’s uniqueness condition for the Candecomp/

Parafac decomposition, Linear Algebra Appl., 420 (2007), pp. 540-552.

. STEGEMAN AND L. DE LATHAUWER, A method to avoid diverging components in the Cande-
comp/Parafac model for generic I x J x 2 arrays, SIAM J. Matrix Anal. Appl., 30 (2009),
pp. 1614-1638.

. STEGEMAN AND L. DE LATHAUWER, Are diverging CP components always mearly propo-
tional?, preprint, arXiv:1110.1988, 2011.

. Tomasi AND R. Bro, A comparison of algorithms for fitting the Parafac model, Comput.

Statist. Data Anal., 50 (2006), pp. 1700-1734.

[58] L.R. TUCKER, Some mathematical notes on three-mode factor analysis, Psychometrika, 31

(1966), pp. 279-311.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


