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Abstract. A best rank-R approximation of an order-3 tensor or three-way array may not
exist due to the fact that the set of three-way arrays with rank at most R is not closed. In this
case, we are trying to compute the approximation results in diverging rank-1 terms. We show that
this phenomenon can be seen as a three-way generalization of approximate diagonalization of a
nondiagonalizable (real) matrix. Moreover, we show that, analogous to the matrix case, the limit
point of the approximating rank-R sequence satisfies a three-way generalization of the real Jordan
canonical form. Recently, it was shown how to obtain the limit point and its three-way Jordan
form for R ≤ min(I, J,K) and groups of two or three diverging rank-1 terms, where I × J × K
is the size of the array. We extend this to groups of four diverging rank-1 terms and show that
R > min(I, J,K) is possible as long as no groups of more than min(I, J,K) diverging rank-1 terms
occur. We demonstrate our results by means of numerical experiments.
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1. Introduction. In the context of low-rank approximations of real order-3 ten-
sors or three-way arrays, we present a three-way generalization of the real Jordan
canonical form of square matrices with real eigenvalues. In section 1.1, we consider
the problem of approximate diagionalization of a real nondiagonalizable matrix. This
problem does not have an optimal solution, but the limit point of the approximating
sequence of diagonalizable matrices has real eigenvalues and satisfies the real Jordan
form. Also, the approximating sequence features diverging rank-1 terms. In sec-
tion 1.2, we discuss an analogous situation in low-rank approximation of three-way
arrays. The best rank-R approximation to a given array may not exist and, as a
result, the approximating sequence of rank-R arrays features diverging rank-1 terms.
The limit point of the rank-R sequence satisfies a three-way generalization of the real
Jordan canonical form.

1.1. Approximate diagonalization of a real matrix. Consider the following
problem. Define the set of diagonalizable R×R matrices as

(1.1) Smat
R = {Y ∈ R

R×R | Y = AC1 A
−1} ,

where A ∈ R
R×R, and C1 ∈ R

R×R is diagonal. Note that Y ∈ Smat
R is diagonalized

as A−1YA. Let ‖ · ‖ denote the Frobenius norm (i.e., the square root of the sum of
squares). We define for Z ∈ R

R×R,

(1.2) Minimize ||Z−Y|| subject to Y ∈ Smat
R ,
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LIMITS OF LOW-RANK TENSOR APPROXIMATIONS 625

(1.3) Minimize ||Z−Y|| subject to Y ∈ S
mat

R ,

where S
mat

R denotes the closure of Smat
R in R

R×R, i.e., the union of the set itself and
its boundary points. We prove the following result.

Theorem 1.1. Consider problem (1.2) with generic Z ∈ R
R×R having some

complex eigenvalues. Then the following hold:
(i) for R ≥ 2, the set Smat

R is not closed;
(ii) problem (1.2) does not have an optimal solution;

(iii) let the sequence (A(n),C
(n)
1 ) converge to an optimal solution X of problem

(1.3). Corresponding to each pair of complex eigenvalues of Z, the limit of

A(n) has a pair of proportional columns, and the limit of C
(n)
1 has a pair of

identical diagonal entries. As n → ∞, the corresponding rank-1 terms have
unbounded norm, but for each pair the norm of the sum of the rank-1 terms
is bounded.

Proof. See section 2 for the proof.

The fact that Z ∈ R
R×R has some complex eigenvalues is equivalent to Z /∈ S

mat

R .
As we will see in section 2, an optimal boundary point X of problem (1.3) can be
written as X = PJP−1, with P ∈ R

R×R containing the principal vectors, and
J ∈ R

R×R is the block diagonal real Jordan canonical form of X. The diagonal blocks

of J = blockdiag(J1, . . . ,Jm) are either 1× 1 or 2 × 2 and of the form Jj =
[ λj 1

0 λj

]
,

with λj ∈ R. Hence, each 2 × 2 diagonal block has two identical real eigenvalues
and only one associated eigenvector. Instead of the diagonal C1 in the set Smat

R the
boundary point X has the block diagonal Jordan form J, with each block Jj in sparse
canonical form.

In the following, we will refer to PJP−1 as the real Jordan canonical form if
diagonal block j has size dj × dj and satisfies Jj = λj ∈ R if dj = 1, and

(1.4) Jj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λj 1 0 · · · 0

0 λj
. . .

. . .
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · 0 λj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
if dj ≥ 2 ,

with λj ∈ R. Hence, PJP−1 has real eigenvalues but is not diagonalizable if
max(dj) ≥ 2. For more details and a proof of the Jordan canonical form, see [26,
sections 3.1 and 3.2].

1.2. Low-rank tensor approximations. Tensors of order n are defined on the
outer product of n linear spaces, S�, 1 ≤ � ≤ n. Once bases of spaces S� are fixed, they
can be represented by n-way arrays. For simplicity, tensors are usually assimilated
with their array representation. Note that a two-way array is a matrix. The entry
yijk of an I × J ×K three-way array Y is in row i, column j, and frontal slice k. The
kth frontal slice Yk of Y is an I × J matrix.

For n ≥ 3, a generalized rank and related decomposition of an n-way array was
introduced in 1927 [23], [24]. Around 1970, the same decomposition was reintroduced
in psychometrics [5] and phonetics [20] for component analysis of n-way data arrays.
It was then named Candecomp and Parafac, respectively. In this paper, we only
consider the case n = 3 and real-valued three-way arrays and decompositions. Fitting
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626 ALWIN STEGEMAN

a three-way Candecomp/Parafac (CP) decomposition with R components to a given
three-way array Z is equivalent to trying to find a best rank-R approximation of
Z. Here, the rank (over the real field) of Z is defined as the smallest number of
(real) rank-1 arrays whose sum equals Z. A three-way array has rank 1 if it is the
outer product of three vectors, i.e., Y = a ◦ b ◦ c. This means that Y has entries
yijk = aibjck. Formally, we define tensor rank as

(1.5) rank(Y) = min

{
R | Y =

R∑
r=1

(ar ◦ br ◦ cr)
}

.

Let SR(I, J,K) denote the set of I × J ×K arrays with rank at most R, i.e.,

(1.6) SR(I, J,K) = {Y ∈ R
I×J×K | rank(Y) ≤ R} .

For finding a best rank-R approximation of an array Z ∈ R
I×J×K , we consider the

following minimization problems:

Minimize ||Z − Y|| subject to Y ∈ SR(I, J,K) ,(1.7)

Minimize ||Z − Y|| subject to Y ∈ SR(I, J,K) ,(1.8)

where SR(I, J,K) denotes the closure of SR(I, J,K) in R
I×J×K , and ‖ ·‖ denotes the

Frobenius norm. For Z /∈ SR(I, J,K), a best rank-R approximation (if it exists) is
a boundary point of SR(I, J,K) and an optimal solution of both problem (1.7) and
problem (1.8). A best rank-R approximation is found by an iterative algorithm updat-
ing the vectors ar,br, cr, r = 1, . . . , R, in the approximating rank-R decomposition
Y =

∑R
r=1(ar ◦ br ◦ cr). The rank-R approximation is denoted as (A,B,C), with

A = [a1| . . . |aR], B = [b1| . . . |bR], and C = [c1| . . . |cR] being the component matri-
ces. The most well-known iterative algorithm for finding a best rank-R approximation
is alternating least squares (ALS), in which alternatingly one component matrix is
updated given the other two component matrices. Each such step is a multiple re-
gression problem. In the following, we refer to this ALS algorithm as CP ALS. For
an overview and comparison of algorithms, see [25], [57], [7].

The rank-R decomposition
∑R

r=1(ar ◦br ◦ cr) and the more general Tucker3 [58]
decomposition

(1.9)

R∑
r=1

P∑
p=1

Q∑
q=1

grpq(sr ◦ tp ◦ uq)

can be seen as three-way generalizations of principal component analysis for matrices.
They can be used for exploratory component analysis of three-way data. Real-valued
applications are in psychology [33], [30] and chemometrics [46]. Complex-valued appli-
cations are in, e.g., signal processing and telecommunications research [44], [45], [16].
Here, the decompositions are mostly used to separate signal sources from an observed
mixture of signals. In scientific computing, the n-way rank-R decomposition is used
to approximate a function f(x1, . . . , xn) on a grid by products of n one-dimensional
functions. Computations on f can be done faster on the approximation; see [2] and
[19]. The four-way rank-R decomposition describes the basic structure of fourth-order
cumulants of multivariate data on which a lot of algebraic methods for independent
component analysis (ICA) are based [6], [14], [13], [8]. A general overview of applica-
tions of tensor decompositions can be found in [31], [1].
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LIMITS OF LOW-RANK TENSOR APPROXIMATIONS 627

An attractive feature of the rank-R decomposition (A,B,C) is that the columns of
A,B,C are unique up to scaling and simultaneous permutation under mild conditions
[34], [54], [41], [28], [9], [51].

Unfortunately, the set SR(I, J,K) may not be closed for R ≥ 2, and problem
(1.7) may not have an optimal solution because of this [17]. In such a case, trying
to compute a best rank-R approximation yields a rank-R sequence converging to an
optimal solution X of problem (1.8), where X is a boundary point of SR(I, J,K) with
rank(X ) > R. As a result, while running the iterative algorithm, the decrease of
||Z − Y|| becomes very slow, and some (groups of) columns of A, B, and C become
nearly linearly dependent, while their norms increase without bound [36], [32], [22].
This phenomenon is known as “diverging CP components” or “degenerate solutions,”
but we will refer to it as diverging rank-1 terms. Needless to say, diverging rank-1
terms should be avoided if an interpretation of the rank-1 terms is needed. Formally,
a group of diverging rank-1 terms corresponds to an index set D ⊆ {1, . . . , R} such
that

||a(n)r ◦ b(n)
r ◦ c(n)r || → ∞ , for all r ∈ D ,(1.10)

while

∥∥∥∥∥∑
r∈D

(a(n)r ◦ b(n)
r ◦ c(n)r )

∥∥∥∥∥ is bounded ,(1.11)

where the superscript (n) denotes the nth update of the iterative algorithm. In
practice and in simulation studies with random data Z, groups of diverging rank-
1 terms are such that the corresponding columns of A, B, and C become nearly
proportional. Other forms of linear dependency are possible but exceptional [56].
Diverging rank-1 terms were first reported and described by [21]. For examples of
(A,B,C) with diverging rank-1 terms, see [47], [55], [53].

There are few theoretical results on nonexistence of a best rank-R approximation
for a specific array Z. It is known that 2 × 2 × 2 arrays of rank 3 do not have a
best rank-2 approximation [17], and conjectures on I × J × 2 arrays are formulated
and partly proven in [49]. In simulation studies with random Z, diverging rank-1
terms occur very often [47], [49], [48], [53]. Although diverging rank-1 terms may also
occur due to a bad choice of starting point for the iterative algorithm [40], [50], if
trying many random starting points does not help, then this is strong evidence for
nonexistence of a best rank-R approximation.

The above implies an analogy with the problem of approximate diagonalization
of a matrix, as dicussed in section 1.1. In fact, we argue that nonexistence of a best
rank-R approximation of a three-way array can be seen as a three-way generalization
of Theorem 1.1.

First, we introduce some notation. We use Y2 = (S,T,U) · Y to denote the
multilinear matrix multiplication of an array Y ∈ R

I×J×K with matrices S (I2 × I),
T (J2×J), and U (K2×K). The result of the multiplication is an I2×J2×K2 array
Y2 with entries

(1.12) y
(2)
ijk =

I∑
r=1

J∑
p=1

K∑
q=1

sir tjp ukq yrpq ,

where sir, tjp, and ukq are entries of S, T, and U, respectively. Using this notation,
the Tucker3 decomposition (1.9) can be written as (S,T,U) · G, where the R×P ×Q

array G has entries grpq. Analogously, the rank-R decomposition
∑R

r=1(ar ◦ br ◦ cr)
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628 ALWIN STEGEMAN

can be written as (A,B,C) ·IR, where IR is the R×R×R array with entries irrr = 1
and zeros elsewhere. Hence, IR is a three-way generalization of the identity matrix
IR.

Next, we return to the analogy with section 1.1. For the slices Yk of Y ∈
SR(I, J,K), the rank-R decomposition can be written as

(1.13) Yk = ACk B
T , k = 1, . . . ,K ,

whereCk is a diagonal matrix with row k ofC as its diagonal. Hence, Y ∈ SR(R,R,K)
implies YkY

−1
l = ACkC

−1
l A−1 for k 
= l (assuming Yl is nonsingular). If A,B,C

have full column rank, then an array Y = (A,B,C) ·IR in SR(I, J,K) is diagonalized
as (A†,B†,C†) · Y = IR, with A† denoting the pseudoinverse of A.

The main topic of this paper is the limit point X of an approximating rank-R
sequence in case a best rank-R approximation does not exist. Since X is an optimal
solution of problem (1.8), one could obtain X directly by solving this problem instead
of trying to compute a best rank-R approximation. So far, this is only possible for
R = 2 [42] and for I × J × 2 arrays [55], [52], and we have no general algorithm
to solve problem (1.8). Recently, a different approach to obtain X was proposed in
[53]. Suppose one tries to compute a best rank-R approximation and this results in
diverging rank-1 terms and one is convinced that no best rank-R approximation exists.
In that case, [53] shows that X can be obtained by fitting a decomposition (S,T,U)·G
to Z, with G = blockdiag(G1, . . . ,Gm) and core block Gj of size dj×dj×dj and in sparse
canonical form. Nondiverging rank-1 terms have an associated core block with dj = 1,
and core blocks with dj ≥ 2 are the limit of a group of dj diverging rank-1 terms.
Initial values for fitting (S,T,U)·G to Z are obtained from the approximating rank-R
sequence. The numbers m and d1, . . . , dm are also obtained from the approximating
rank-R sequence. For R ≥ 3, simulation studies suggest that these numbers cannot
be obtained from Z directly [47], [48].

The method of [53] is limited to R ≤ min(I, J,K) and max(dj) ≤ 3. In this paper,
we extend this to R > min(I, J,K) but max(dj) ≤ min(I, J,K), and max(dj) ≤ 4.
Also, we argue that the decomposition of the limit point X = (S,T,U) · G with
G = blockdiag(G1, . . . ,Gm) can be seen as a three-way generalization of the real Jordan
canonical form. This then completes the analogy with the problem of approximate
diagonalization of a matrix in section 1.1.

Together with [53], the method described in this paper eliminates the problems of
diverging rank-1 terms that occur when a best rank-R approximation does not exist.
The matrices S,T,U in the decomposition of X generally have low condition numbers.
The core blocks Gj are in sparse canonical form. As a result, the decomposition of
X may be interpretable. Alternatively, when appropriate, a decomposition of X into
fewer rank-1 terms or higher-rank terms may be computed.

This paper is organized as follows. In section 2, we consider the problem of ap-
proximate diagonalization of a matrix and prove Theorem 1.1. Also, we show that an
optimal boundary point X satisfies a real Jordan canonical form. In section 3, we dis-
cuss in more detail the method of [53] to obtain the limit X of a sequence of diverging
rank-1 terms. It is pointed out that the method still works if max(dj) ≤ min(I, J,K).
Also, the inclusion of groups of dj = 4 diverging rank-1 terms is discussed. In sec-
tion 4, we demonstrate the extended method in a simulation study. Finally, section 5
contains a discussion of our findings.

We denote vectors as x, matrices as X, and three-way arrays as X . Entry xijk

of X is in row i, column j, and frontal slice k. We use ⊗ to denote the Kronecker
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product, and � denotes the (columnwise) Khatri–Rao product, i.e., for matrices X
and Y with R columns, X�Y = [x1⊗y1| . . . |xR⊗yR]. The transpose ofX is denoted
as XT . We refer to an I × J matrix as having full column rank if its rank equals J ,
and as having full row rank if its rank equals I. We refer to the multilinear matrix
multiplication (II , IJ ,U) ·X with U nonsingular as a slicemix of X . A block-diagonal
three-way array is denoted as X = blockdiag(X1, . . . ,Xm), where the Xj have size
dj × dj × dj , and the diagonal (xiii, i = 1, . . . , n) of X consists of the diagonals of the
blocks.

2. Approximate diagonalization of a matrix. Below, we prove Theorem 1.1.
Also, at the end of this section, we show that the limit point X of an approximating
sequence of diagonalizable matrices has a real Jordan canonical form.

First, we prove (i) of Theorem 1.1. Let X = diag(J1, 1, 1, . . . , 1) be a block-
diagonal R×R matrix with one 2× 2 diagonal block

(2.1) J1 =

[
1 1
0 1

]
,

followed by R − 2 ones on the diagonal. Then X has eigenvalue 1 with multiplicity
R. The associated eigenvectors are e1, e3, . . . , eR, where ej denotes the jth column
of IR. Hence, X has only R − 1 linearly independent eigenvectors, which implies
X /∈ Smat

R . A sequence Y(n) ∈ Smat
R such that Y(n) → X is as follows. Let Y(n) =

diag(J
(n)
1 , 1, 1, . . . , 1), with

(2.2) J
(n)
1 =

[
1 1
0 1 + n−1

]
.

Then Y(n) has eigenvalue 1 with multiplicity R−1 and eigenvalue 1+n−1. Moreover,
Y(n) has R linearly independent eigenvectors e1, ne1 + e2, e3, . . . , eR. Hence, Y

(n) ∈
Smat
R for all n. This shows that X /∈ Smat

R is a boundary point of Smat
R . Therefore,

the set Smat
R is not closed. This proves (i).

Next, we prove (ii). Let Z ∈ R
R×R be generic and have some complex eigenvalues.

This implies that the eigenvalues of Z are distinct. Instead of considering problem
(1.2), we first solve problem (1.3). We denote an optimal solution of (1.3) as X. The
real Schur decomposition [18, section 7.4.1] of Z is Z = QzRzQ

T
z with Qz ∈ R

R×R

orthonormal, and Rz ∈ R
R×R block upper triangular with only 1 × 1 and 2 × 2

diagonal blocks. Since det(Z − λ IR) = det(Rz − λ IR), the eigenvalues of Z and Rz

are indentical. Each 1 × 1 diagonal block of Rz is a real eigenvalue of Z, and each
2× 2 diagonal block of Rz has a pair of complex conjugate eigenvalues, that are also
eigenvalues of Z. For a diagonalizable approximation Y of Z, we use the real Schur
decomposition to write Y = QRQT , with Q ∈ R

R×R orthonormal, and R ∈ R
R×R

upper triangular. We have

(2.3) ||Z−Y|| = ||QT Qz Rz Q
T
z Q−R|| .

Hence, we must choose Q such that QTQzRzQ
T
z Q is as upper triangular as possible.

The upper triangular part can be set to zero by chosing R appropriately.
We set Q = QzU with U = blockdiag(U1, . . . ,Um) having orthonormal diagonal

blocks of sizes 1× 1 or 2× 2 matching the sizes of the diagonal blocks of Rz. By this
choice, the part below the subdiagonal of QTQzRzQ

T
z Q = UTRzU is zero, and only

2 × 2 subproblems remain, each with one nonzero subdiagonal entry. Next, we show
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how to solve a 2× 2 subproblem. By choosing a 2× 2 diagonal block Uj and a 2× 2

upper triangular matrix Rj, we need to minimize ||UT
j R

(z)
j Uj −Rj||, where R(z)

j is a
2× 2 diagonal block of Rz with complex eigenvalues. As above, the upper triangular

part of UT
j R

(z)
j Uj can be set to zero by chosing Rj appropriately. Hence, we focus

on chosing Uj such that the square of the (2, 1) entry of UT
j R

(z)
j Uj is minimized. Let

(2.4)

R
(z)
j =

[
a b
c d

]
, R̃

(z)
j =

[ −b a
−d c

]
, Uj =

[
cos(α) sin(α)

− sin(α) cos(α)

]
,

where we need R̃
(z)
j below, and the form of Uj follows from orthonormality. The

(2, 1) entry of UT
j R

(z)
j Uj equals

(2.5) (sin(α) cos(α)) R̃
(z)
j

(
sin(α)
cos(α)

)
= (sin(α) cos(α)) sym(R̃

(z)
j )

(
sin(α)
cos(α)

)
,

where

(2.6) sym(R̃
(z)
j ) = (R̃

(z)
j + (R̃

(z)
j )T )/2 =

[ −b (a− d)/2
(a− d)/2 c

]
.

The α that minimizes the square of (2.5) is such that the vector (sin(α) cos(α))T is

an eigenvector of the smallest (in absolute value) eigenvalue of sym(R̃
(z)
j ).

Below, we show that for an optimal α, the diagonal entries of UT
j R

(z)
j Uj are

identical, and the (1, 2) entry is nonzero. This implies that Rj has two identical real
eigenvalues with only one associated eigenvector and, hence, is not diagonalizable.
Therefore, an optimal solution X of problem (1.3) is a boundary point of Smat

R but
does not lie in the set itself. It then follows that problem (1.2) does not have an
optimal solution, which proves (ii).

The entries of UT
j R

(z)
j Uj are equal to

(1, 1) = a cos2(α) − (b+ c) sin(α) cos(α) + d sin2(α) ,

(2, 2) = d cos2(α) + (b+ c) sin(α) cos(α) + a sin2(α) ,

(1, 2) = b cos2(α) + (a− d) sin(α) cos(α)− c sin2(α) ,

(2, 1) = c cos2(α) + (a− d) sin(α) cos(α) − b sin2(α) .

Let f(α) denote the expression for (2, 1) in (2.5). Setting the derivative of (f(α))2

equal to zero yields 2 f(α) f ′(α) = 0. Since R
(z)
j has two complex eigenvalues, the

(2, 1) entry of UT
j R

(z)
j Uj cannot be zero. Hence, f(α) 
= 0 and f ′(α) = 0 must hold

for an optimal α. We obtain

(2.7) f ′(α) = −2 (b+ c) sin(α) cos(α) + (a− d) (cos2(α) − sin2(α)) = 0 .

It can be verified that (1, 1) − (2, 2) equals the expression in (2.7), which is zero.
Hence, we have (1, 1) = (2, 2). Note that (1, 1)+ (2, 2) = (a+ d). Hence, the diagonal
entries (and eigenvalues) of Rj are (a + d)/2, which is the real part of the complex

eigenvalues of R
(z)
j in (2.4). Also, we have (1, 2) = (2, 1) + (b − c). Hence, (1, 2) = 0

implies that (2, 1) = c− b is the smallest (in absolute value) eigenvalue of sym(R̃
(z)
j );

see just below (2.6). The eigenvalues of sym(R̃
(z)
j ) in (2.6) are given by

(2.8)
c− b±√

(b + c)2 + (a− d)2

2
.
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LIMITS OF LOW-RANK TENSOR APPROXIMATIONS 631

If this is equal to c− b, then sym(R̃
(z)
j ) has an eigenvalue zero. Since (2, 1) = c− b is

its smallest (in absolute value) eigenvalue, it follows that (2, 1) = c− b = 0. However,
as argued just above (2.7), the entry (2, 1) being zero implies real eigenvalues for

R
(z)
j , which is a contradiction. (Alternatively, one can verify that b = c implies real

eigenvalues for R
(z)
j in (2.4)). Hence, the (1, 2) entry is nonzero. This completes the

proof of (ii).
Next, we prove (iii). As shown above, the limit point X has a pair of identical real

eigenvalues with only one associated eigenvector for each pair of complex conjugate
eigenvalues of Z. The real eigenvalues of Z are distinct (since Z is generic) and are also
eigenvalues of X. Let Y(n) ∈ Smat

R converge to X. Then, for large n, the eigendecom-

position Y(n) = A(n)C
(n)
1 (A(n))−1 will feature nearly identical pairs of eigenvalues

on the diagonal of C
(n)
1 and corresponding nearly proportional eigenvectors in the

columns of A(n). Finally, we consider the corresponding pairs of rank-1 terms. Let

B(n) = (A(n))−1. The rank-1 term s is given by c
(n)
ss a

(n)
s (b

(n)
s )T , where c

(n)
ss denotes

entry (s, s) of C
(n)
1 , vector a

(n)
s denotes the sth column ofA(n), and vector (b

(n)
s )T de-

notes the sth row ofB(n). Suppose c
(n)
ss ≈ c

(n)
tt and a

(n)
s ≈ a

(n)
t . Then the norms of b

(n)
s

and b
(n)
t are increasing as n increases, while b

(n)
s ≈ −b

(n)
t such that ||c(n)ss a

(n)
s (b

(n)
s )T+

c
(n)
tt a

(n)
t (b

(n)
t )T || remains bounded. This completes the proof of Theorem 1.1.

Note that if Z is not generic, then we include the possibility that some of its
real eigenvalues may be identical with less associated eigenvectors. As a result, more
diverging rank-1 terms (possibly in larger groups) may occur in the decomposition

Y(n) = A(n)C
(n)
1 (A(n))−1. For generic Z with some complex eigenvalues, the diverg-

ing rank-1 terms occur in pairs only and are related to the pairs of complex conjugated
eigenvalues of Z.

As stated above, under the assumptions of Theorem 1.1, an optimal boundary
point X has some distinct real eigenvalues, and some pairs of identical real eigenvalues
with only one associated eigenvector. This implies that X = PJP−1 with J =
blockdiag(J1, . . . ,Jm) being the real Jordan canonical form of X. The Jordan blocks
Jj are either 1 × 1 and equal to a distinct real eigenvalue of X, or 2 × 2 and of the

form
[ λj 1

0 λj

]
with the pair of identical real eigenvalues on the diagonal.

3. Low-rank tensor approximations: From diverging rank-1 terms to
a three-way Jordan canonical form. Here, we describe and extend the approach
and method of [53] to obtain the limit point X of a sequence of rank-R approximations
in case a best rank-R approximation does not exist. In section 3.1, we describe
the method of [53], which is limited to R ≤ min(I, J,K) and max(dj) ≤ 3, with
I × J ×K the size of the arrays. In sections 3.2 and 3.3, we discuss an extension to
R > min(I, J,K) with max(dj) ≤ min(I, J,K) and max(dj) ≤ 4. In section 3.2, we
present theoretical results on the limit point X and its decomposition in block terms.
In section 3.3, we discuss changes in the algorithm of [53] due to the extension of the
method.

3.1. How to obtain the limit point of the approximating rank-R se-
quence. In the matrix problem of approximate diagonalization, the groups of di-
verging rank-1 terms are directly related to Jordan blocks and the corresponding
principal vectors of the limiting boundary point X. Associated with the limit of a
group of two diverging rank-1 terms are two principal vectors (which are linearly in-
dependent) and a 2 × 2 Jordan block, which is not diagonalizable. For an I × I × 2
array Z with no best rank-R approximation, something similar happens. For the
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632 ALWIN STEGEMAN

approximating rank-R sequence Y, the matrix Y2Y
−1
1 converges to X2X

−1
1 of the

limiting boundary point X . Here, Yk and Xk are the kth I× I frontal slices of Y and
X , respectively. The matrix Y2Y

−1
1 has real eigenvalues and is diagonalizable (due

to rank(Y) ≤ R), while X2X
−1
1 has real eigenvalues but is not diagonalizable [47],

[49], [55]. Hence, X2X
−1
1 satisfies the real Jordan form PJP−1. In almost all cases,

the limiting array Xj of a group of dj diverging rank-1 terms corresponds to a dj × dj
Jordan block of J. It can be shown that rank(Xj) > dj [47], [55]. Below, we describe
how this relation between groups of diverging components and their limit points has
been generalized in [53] to I × J ×K arrays with R ≤ min(I, J,K).

Suppose Z /∈ SR(I, J,K) and no best rank-R approximation of Z exists. After
running an iterative algorithm, we obtain (A,B,C) featuring diverging rank-1 terms.
Let the R columns of (A,B,C) be ordered such that A = [A1 | . . . |Am], B =
[B1 | . . . |Bm], C = [C1 | . . . |Cm], with Aj , Bj , Cj having dj columns and defining
a group of dj diverging rank-1 terms if dj ≥ 2, and a nondiverging rank-1 term if
dj = 1. We have R =

∑m
j=1 dj . Let Yj = (Aj ,Bj ,Cj) · Idj be the I × J × K

array defined by the dj rank-1 terms in (Aj ,Bj ,Cj). Hence, rank(Yj) ≤ dj and
Y =

∑m
j=1 Yj . Related to the observations above, the following assumption is made

in [53].
Assumption 1. Each array Yj , defined by a group of dj diverging rank-1 terms,

converges to an array Xj with rank(Xj) > dj .
It follows that the limit Xj can be approximated arbitrarily closely by rank-dj

arrays. Hence, Xj is a boundary point of Sdj(I, J,K) with rank larger than dj .
Analogously to the Jordan blocks and principal vectors associated with the limit

of a group of diverging rank-1 terms for I × I × 2 arrays, the limits Xj have a similar
decomposition. In [17], the following result is proven for dj = 2.

Lemma 3.1. For a group of dj = 2 diverging rank-1 terms, the limit Xj can be
written as Xj = (Sj ,Tj ,Uj) · Gj with Sj, Tj , Uj of rank 2, and 2 × 2 × 2 array Gj

given by

(3.1)

[
1 0 0 1
0 1 0 0

]
.

We have rank(Xj) = rank(Gj) = 3.
In (3.1), we denote the 2×2×2 array Gj with 2×2 slices G1 and G2 as [G1 |G2].

Lemma 3.1 shows that the limit Xj of a group of two diverging rank-1 terms has
associated vectors in Sj ,Tj ,Uj and a core block Gj in sparse canonical form. For a
group of dj = 3 diverging rank-1 terms, the following result is proven in [53].

Lemma 3.2. For a group of dj = 3 diverging rank-1 terms, and min(I, J,K) ≥ 3,
almost all limits Xj with multilinear rank (3, 3, 3) can be written as Xj = (Sj ,Tj ,Uj)·
Gj with Sj, Tj, Uj of rank 3, and 3× 3× 3 array Gj given by

(3.2)

⎡⎣ 1 0 0 0 ∗ 0 0 0 1
0 1 0 0 0 ∗ 0 0 0
0 0 1 0 0 0 0 0 0

⎤⎦ ,

where ∗ denotes a nonzero entry. We have rank(Xj) = rank(Gj) = 5.
The multilinear rank of an I×J×K array is defined as follows. A mode-j vector

of an I × J × K array is defined as a vector that is obtained by varying the jth
index and keeping the other two indices fixed. Hence, a mode-2 vector has size J .
The mode-j rank of the array is the rank of the set of mode-j vectors. This concept
generalizes the row rank and column rank of matrices. The multilinear rank is defined
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LIMITS OF LOW-RANK TENSOR APPROXIMATIONS 633

as the triplet (mode-1 rank, mode-2 rank, mode-3 rank). Note that, unlike the matrix
case, the mode-j rank and mode-k rank can be different for j 
= k, and they can be
different from the rank of the array [35].

The notion “almost all” in Lemma 3.2 means that exceptional cases of Xj lie in
a subset of the boundary with lower dimensionality. The requirement of multilinear
rank (3, 3, 3) is a regularity condition. In both cases, no exceptions were found in the
simulation study of [53].

In [53], only the limits of groups of two and three diverging rank-1 terms were
considered. In this paper, we also consider groups of four diverging rank-1 terms. We
prove the following result.

Lemma 3.3. For a group of dj = 4 diverging rank-1 terms, and min(I, J,K) ≥ 4,
almost all limits Xj with multilinear rank (4, 4, 4) can be written as Xj = (Sj ,Tj ,Uj)·
Gj with Sj, Tj, Uj of rank 4, and 4× 4× 4 array Gj given by

(3.3)

⎡⎢⎢⎣
1 0 0 0 0 ∗ 0 0 0 0 ∗ 0 0 0 0 1
0 1 0 0 0 0 ∗ 0 0 0 0 ∗ 0 0 0 0
0 0 1 0 0 0 0 ∗ 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎦ ,

where ∗ denotes a nonzero entry. We have rank(Xj) = rank(Gj) ≥ 7.
Proof. See the appendix for the proof.
To sum up, for groups of no more than four diverging rank-1 terms, the limit

process according to Assumption 1 and Lemmas 3.1, 3.2, 3.3, is as follows:

Y = (A1,B1,C1) + (A2,B2,C2) + · · · + (Am,Bm,Cm)⏐� ⏐� ⏐� ⏐�
X = (S1,T1,U1) · G1 + (S2,T2,U2) · G2 + · · · + (Sm,Tm,Um) · Gm.

Here, (Aj ,Bj ,Cj) contains dj rank-1 terms which are diverging for dj ≥ 2, and
nondiverging for dj = 1. The limit points Xj = (Sj ,Tj ,Uj) · Gj have rank larger
than dj if dj ≥ 2, and rank 1 if dj = 1. The decomposition of the overall limit point
X is an example of a decomposition into block terms, introduced in [10], [11], [12],
where the block terms are (Sj ,Tj ,Uj) · Gj . The decomposition of X =

∑m
j=1 Xj can

also be written as a Tucker3 decomposition (1.9) with an R × R × R block diagonal
core array G = blockdiag(G1, . . . ,Gm), i.e., X = (S,T,U) · G =

∑m
j=1(Sj ,Tj ,Uj) · Gj ,

with S = [S1 | . . . |Sm], T = [T1 | . . . |Tm], and U = [U1 | . . . |Um]. The block
diagonal core array G is a three-way generalization of the real Jordan canonical form
for matrices. The limit process above shows that X can be approximated arbitrarily
closely by a sequence of rank-R arrays. Hence, X ∈ SR(I, J,K). Moreover, if ||Z−Y||
converges to the minimum of problem (1.8), then X is a boundary point of SR(I, J,K)
with rank larger than R, and it is an optimal solution of problem (1.8).

Below, we give an outline of the algorithm of [53] to obtain X and its decompo-
sition, where we also include groups of dj = 4 diverging rank-1 terms. For dj = 2
diverging rank-1 terms, a decomposition of the limit Xj is given by Lemma 3.1. For
dj = 3 or dj = 4, we assume the following.

Assumption 2. The limit Xj of an array Yj , defined by a group of dj = 3 or
dj = 4 diverging rank-1 terms, can be written as Xj = (Sj ,Tj ,Uj) · Gj with Sj , Tj ,
Uj of rank dj , and Gj equal to the canonical form (3.2) for dj = 3, and equal to (3.3)
for dj = 4.

Input of the algorithm is the data array Z ∈ R
I×J×K and approximating rank-R

decomposition Y = (A,B,C) · IR with groups of two, three, or four diverging rank-1
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634 ALWIN STEGEMAN

terms. The limit point X and its decomposition X = (S,T,U) · G are obtained by
fitting the decomposition (S,T,U)·G to Z with initial values obtained from (A,B,C).
An outline of the algorithm is as follows.

1. Identify the groups of diverging rank-1 terms in A,B,C.
2. Simultaneously reorder the columns ofA,B,C such thatA = [A1 | . . . |Am],

B = [B1 | . . . |Bm], C = [C1 | . . . |Cm], with Aj , Bj , Cj having dj columns
and corresponding to a group of dj diverging rank-1 terms if dj ≥ 2, and a
nondiverging rank-1 term if dj = 1. We have

∑m
j=1 dj = R.

3. (Block SGSD) For each Yj = (Aj ,Bj ,Cj) · Idj , compute Yj = (S̃j , T̃j , Ũj) ·
G̃j , where S̃j , T̃j , Ũj are columnwise orthogonal, and G̃j ∈ Sdj (dj , dj , dj)
has all frontal slices upper triangular. This yields the block SGSD Y =∑m

j=1(S̃j , T̃j , Ũj) · G̃j .

4. (Initial values) From the block SGSD in step 3, obtain initial values S
(0)
j ,

T
(0)
j , U

(0)
j , G(0)

j , j = 1, . . . ,m, for fitting the decomposition in block terms∑m
j=1(Sj ,Tj ,Uj) · Gj to Z.

5. Using the initial values in step 4 and the ALS algorithm of [29], fit the (con-
strained Tucker3) decomposition (S,T,U) · G =

∑m
j=1(Sj ,Tj ,Uj) · Gj to Z

with

Gj =

⎧⎪⎪⎨⎪⎪⎩
1 if dj = 1 ,
canonical form (3.1) if dj = 2 ,
canonical form (3.2) if dj = 3 ,
canonical form (3.3) if dj = 4 ,

where S,T,U and the nonzero entries of core G = blockdiag(G1, . . . ,Gm) are
free parameters.

6. Normalize (most of) the nonzero core entries of each Gj to one.
The output of the algorithm is then the optimal boundary point X in terms of the
closest decomposition in block terms X =

∑m
j=1(Sj ,Tj ,Uj) · Gj to Z. For examples

of the application of the algorithm, see [53, section 4]. Next, we describe each step in
some more detail.

In step 1, we use the following criterion to identify groups of diverging rank-1
terms. Recall that in a group of diverging rank-1 terms, the corresponding columns
of A,B,C, when normed to length 1, are nearly identical up to sign. Other forms of
linear dependency are possible but exceptional [56]. We put rank-1 terms s and t in
the same group of diverging rank-1 terms if

(3.4)

∣∣∣∣( 〈as, at〉
‖as‖2 ‖at‖2

) ( 〈bs,bt〉
‖bs‖2 ‖bt‖2

) ( 〈cs, ct〉
‖cs‖2 ‖ct‖2

)∣∣∣∣ > 0.90 ,

where 〈v,w〉 = vTw, and ‖v‖22 = vTv. The left-hand side of (3.4), without absolute
value, is equal to the cosine of the angle between the vectorized rank-1 terms s and
t, where the latter are as ⊗ bs ⊗ cs and at ⊗ bt ⊗ ct, respectively. The critical value
0.90 is somewhat arbitrary. In the simulation study of [53] the value of 0.95 was used
successfully in combination with the CP ALS algorithm with convergence criterion
1e-9. In the simulation study in section 4, we demonstrate that the critical value
0.90 also yields good results.

Since step 2 speaks for itself, we move on to step 3. For an I×J×K array Y, the
simultaneous generalized Schur decomposition (SGSD) is given by Yk = Qa Rk Q

T
b ,
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k = 1, . . . ,K, where Qa (I × R) and Qb (J × R) are columnwise orthonormal and
Rk are R×R upper triangular, k = 1, . . . ,K. Hence, Y = (Qa,Qb, IK) · R, where R
is the R × R ×K array with frontal slices Rk, k = 1, . . . ,K. In the block SGSD in
step 3, each array Yj satisfies a variant of SGSD in which a slicemix is also applied.
Details on how to compute the block SGSD are given in section 3.3.

Next, we discuss step 4. How to obtain the initial values for dj ∈ {1, 2, 3} is
explained in [53, section 2.2]. The case dj = 4 is described in section 3.3. Step 5 of
the algorithm speaks for itself.

In Step 6 of the algorithm, the nonzero entries of the resulting blocks Gj are
normalized to one if possible. For dj = 4 this procedure is the same as for dj ∈ {2, 3}
in [53]. We premultiply the slices of Gj by (G

(j)
1 )−1, and normalize the resulting

second, third, and fourth slices. Postmultiply Sj by G
(j)
1 , and Uj by the inverse

slice normalizations. Note that in slices G
(j)
2 and G

(j)
3 only one nonzero entry can be

normalized to one.

3.2. Theoretical results for R > min(I, J,K). Here, we discuss results
on the border rank and rank of the limit point X , and on the uniqueness of its
decomposition.

As stated in section 3.1, since we assume a best rank-R approximation does not
exist, it follows that rank(X ) > R. Hence, X is a boundary point of SR(I, J,K)
with rank larger than R. In [53, Lemma 3.4(b)], rank(X ) > R was proven using the
assumption of R ≤ min(I, J,K). Next, we consider the border rank of X . The latter
is defined as in [4], [17]:
(3.5)
brank(X ) = min{R : X can be approximated arbitrarily well by arrays of rank R } .
Hence, if brank(X ) = R, then X ∈ SR(I, J,K) but X /∈ SR−1(I, J,K). In [53,
Lemma 3.4(a)], it is proven that brank(X ) = R using the assumption of R ≤
min(I, J,K). The following lemma shows that this assumption is not necessary.

Lemma 3.4. Let Z /∈ SR−1(I, J,K) and let X be an optimal solution of problem
(1.8). Then brank(X ) = R.

Proof. The proof is analogous to showing that a best rank-R approximation (if
it exists) has rank R if rank(Z) ≥ R [17, Lemma 8.2] [53, Lemma 2.2]. If Z ∈
SR(I, J,K), then brank(Z) = R and X = Z is the optimal solution of problem
(1.8). Next, assume Z /∈ SR(I, J,K). Without loss of generality we suppose that
brank(X ) = R− 1. Let Y(n) ∈ SR−1(I, J,K) with Y(n) → X . Since Z /∈ SR(I, J,K),

there is a nonzero entry (i, j, k) of Z − X . Let Ỹ be all-zero, except for ỹijk =

zijk − xijk . Hence, Ỹ has rank 1. It follows that Y(n) + Ỹ → X + Ỹ. Hence,

X̃ = X + Ỹ ∈ SR(I, J,K). Moreover, ||Z − X̃ || < ||Z − X||, which contradicts the
fact that X is an optimal solution of problem (1.8). Therefore, brank(X ) = R. Note
that brank(X ) > R is not possible because X ∈ SR(I, J,K). This completes the
proof.

Note that brank(X ) = R ensures that X cannot be approximated arbitrarily
closely by less than R rank-1 terms. Hence, of the R rank-1 terms constituting array
Y, all terms make a contribution to the convergence to X .

Next, we consider the relation between the rank of the block diagonal G and
rank(X ). In [27], it is proven that rank(G) = ∑m

j=1 rank(Gj) if dj ≥ 3 for at most one
j. Under the assumption that S,T,U have rank R, which implies R ≤ min(I, J,K),
we have rank(X ) = rank(G). For R > min(I, J,K), we only have rank(X ) ≤ rank(G).
We can show rank equality when there is one group of dj = 2 diverging rank-1 terms.
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In that case, rank(Gj) = 3 by Lemma 3.1, rank(G) = R+ 1 by the result of [27], and
rank(X ) ≤ R+ 1 together with rank(X ) > R implies rank(X ) = R+ 1.

Numerical experiments show that often rank(X ) < rank(G) when R > min(I, J,K).
For example, we ran the CP ALS algorithm on a random 4× 4× 4 array with R = 6
rank-1 terms and obtained diverging rank-1 terms in all (and many) runs. In each
run that was not suboptimal, there were two groups of two diverging rank-1 terms:
d1 = 2, d2 = 2, d3 = 1, d4 = 1. The result of [27], together with Lemma 3.1, implies
rank(G) = 3 + 3 + 1 + 1 = 8. However, after obtaining X (using the method of [53]
with the changes described in sections 3.1 and 3.3) and running CP ALS with R = 7
on X , we obtained a perfect fit. Hence, rank(X ) = 7 in this case.

As a final topic in this section, we discuss uniqueness of the block terms (Sj ,Tj ,Uj)·
Gj in the decomposition of X . The block terms are unique if in alternative decompo-
sitions of X with block terms of the same sizes, the ambiguities occur only within the
block terms and in the order of the block terms. In [53, Lemma 3.5], it is shown that
the block terms are unique if only groups of two diverging rank-1 terms occur, i.e.,
if max(dj) = 2. In the proof, it is assumed that S,T,U have rank R, which implies
R ≤ min(I, J,K).

Numerical experiments are inconclusive about the uniqueness of the block terms
when R > min(I, J,K). For all examples we tried, fitting a decomposition in block
terms to X with the same block sizes dj (using the ALS algorithm of [29]), resulted
either in the same block terms as in the original decomposition or in diverging block
terms. In the latter cases, all but two block terms (one with dj = 1 and one with
dj = 2) were equal to the original blocks terms, the ALS algorithm showed slow
convergence, and the two different block terms, when reshaped into vectors fs and ft,
featured (fTs ft)/(

√
fTs fs

√
fTt ft) close to −1.

Hence, we have obtained no nonequivalent alternative decompositions in block
terms of the same sizes. If in some case the block terms in the decomposition X
are not unique, the obtained optimal boundary point X is still of value and may be
decomposed into rank-1 terms or different block terms when appropriate.

3.3. Changes in the algorithm for R > min(I, J,K) and dj = 4. Here,
we discuss the changes in the algorithm of [53] that are needed to incorporate groups
of four diverging rank-1 terms. Also, we argue that the method also works for R >
min(I, J,K) under the restriction max(dj) ≤ min(I, J,K). First, we discuss step 3
of the algorithm outlined in section 3.1. We show that the block SGSD can still be
computed if not R ≤ min(I, J,K) but still max(dj) ≤ min(I, J,K). We add the
following assumption.

Assumption 3. The largest group of diverging rank-1 terms satisfies max(dj) ≤
min(I, J,K).

Existence of the block SGSD in step 3 follows from the fact that each group of
dj diverging rank-1 terms defines an array Yj ∈ Sdj(I, J,K), and Lemma A.2 (in
the appendix) applied to each Yj . Note that we use max(dj) ≤ min(I, J,K) here.

Next, we show how to obtain Yj = (S̃j , T̃j , Ũj) · G̃j . This part closely follows [53,
section 2.1].

If dj = 1, then we set S̃j = Aj , T̃j = Bj , Ũj = Cj , and G̃j = 1. Next,

suppose dj ≥ 2. Let Aj = S̃j R
(j)
a be a QR-decomposition of Aj , with S̃j (I × dj)

columnwise orthonormal, and R
(j)
a (dj × dj) upper triangular. Let Bj = T̃j L

(j)
b be a

QL-decomposition of Bj , with T̃j (J×dj) columnwise orthonormal, and L
(j)
b (dj×dj)

lower triangular. Then the matrix form (1.13) of the rank-dj decomposition of Yj can
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be written as

(3.6) Aj C
(j)
k BT

j = S̃j (R
(j)
a C

(j)
k (L

(j)
b )T ) T̃T

j = S̃j R
(j)
k T̃T

j , k = 1, . . . ,K ,

where C
(j)
k denotes the dj × dj diagonal matrix with row k of Cj as its diagonal. The

right-hand side of (3.6) defines an SGSD of Yj . Hence, Yj = (S̃j , T̃j , IK) · Rj , where

Rj is the dj × dj ×K array with upper triangular frontal slices R
(j)
k .

By Lemma A.1 (in the appendix), it follows that there exists Ũj (K×dj) column-

wise orthonormal such that Rj = (Idj , Idj , Ũj) · G̃j , with G̃j ∈ Sdj (dj , dj , dj). The

matrix Ũj can be obtained as follows. For a d × d upper triangular matrix R, let
vech(R) denote the (d(d+ 1)/2)-vector obtained by stacking the entries in the upper
triangular part of R above each other. Let

(3.7) Hj = [vech(R
(j)
1 ) | . . . | vech(R(j)

K )] .

If the singular value decomposition ofHj is given byHj = Q1 DQT
2 , where the dj×dj

diagonal matrix D contains the singular values, then we may take Ũj = (Q†
2)

T , where

Q†
2 is the pseudoinverse of Q2. Note that the rank of Hj is equal to the mode-3 rank

of Rj , and is less than or equal to dj by Rj = (Idj , Idj , Ũj) · G̃j . Hence, it follows

that Yj = (S̃j , T̃j , Ũj) · G̃j , and step 3 is possible under Assumption 3.
Next, we consider step 4 of the algorithm outlined in section 3.1, and discuss

how to obtain the initial values for a group of dj = 4 diverging rank-1 terms. We

write G̃j = [G̃
(j)
1 | G̃(j)

2 | G̃(j)
3 | G̃(j)

4 ]. We premultiply the slices of G̃j by (G̃
(j)
1 )−1, and

postmultiply S̃j by G̃
(j)
1 . We obtain

(3.8) G̃j =

⎡⎢⎢⎣
1 0 0 0 a2 e2 h2 j2 a3 e3 h3 j3 a4 e4 h4 j4
0 1 0 0 0 b2 f2 i2 0 b3 f3 i3 0 b4 f4 i4
0 0 1 0 0 0 c2 g2 0 0 c3 g3 0 0 c4 g4
0 0 0 1 0 0 0 d2 0 0 0 d3 0 0 0 d4

⎤⎥⎥⎦ .

By assumption, ap ≈ bp ≈ cp ≈ dp for p = 2, 3, 4 (see the proof of Lemma 3.3 in

the appendix). Next, we subtract up = (ap + bp + cp + dp)/4 times G̃
(j)
1 from G̃

(j)
p

for p = 2, 3, 4, and postmultiply Ũj by the inverse of this slicemix. In G̃j , we set
ap = bp = cp = dp = 0 for p = 2, 3, 4.

By assumption, the vectors (ep , fp , gp) are nearly proportional for p = 2, 3, 4 (see
the proof of Lemma 3.3 in the appendix). We subtract vp = (ep/e2+fp/f2+gp/g2)/3

times G̃
(j)
2 from G̃

(j)
p for p = 3, 4, and postmultiply Ũj by the inverse of this slicemix.

In G̃j , we set ep = fp = gp = 0 for p = 3, 4. After this slicemix, the resulting vectors
(hp−vph2 , ip−vpi2) are nearly proportional for p = 3, 4 (see the proof of Lemma 3.3
in the appendix). We subtract w = ((h4−v4h2)/(h3−v3h2)+(i4−v4i2)/(i3−v3i2))/2

times G̃
(j)
3 from G̃

(j)
4 , and postmultiply Ũj by the inverse of this slicemix. In G̃j , we

set h4 − v4h2 = i4 − v4i2 = 0. The only nonzero entry of G
(j)
4 is then the (1,4) entry,

which equals x = (j4 − v4j2)− w (j3 − v3j2).

Next, we subtract y3 = (j3 − v3j2)/x times G
(j)
4 from G

(j)
3 , and y2 = j2/x times

G
(j)
4 from G

(j)
2 , and postmultiply Ũj by the inverse of this slicemix. This sets the

(1,4) entries of G
(j)
3 and G

(j)
2 to zero. Then we subtract z = h2/(h3 − v3h2) times

G
(j)
3 from G

(j)
2 , and postmultiply Ũj by the inverse of this slicemix. This sets the

D
ow

nl
oa

de
d 

06
/1

1/
13

 to
 1

29
.1

25
.1

39
.1

45
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

638 ALWIN STEGEMAN

(1,3) entry of G
(j)
2 to zero. We obtain the following form:

(3.9)

G̃j =

⎡⎢⎢⎣
1 0 0 0 0 e2 0 0 0 0 h3 − v3h2 0 0 0 0 x
0 1 0 0 0 0 f2 i2 0 0 0 i3 − v3i2 0 0 0 0
0 0 1 0 0 0 0 g2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎦ .

Finally, as in the proof of Lemma 3.3 in the appendix, we transform (3.9) such that it
has the same pattern of zeros as the canonical form (3.3). In each slice, we subtract

i2/f2 times column 3 from column 4. We postmultiply T̃j by the inverse of this trans-

formation. Next, we add i2/f2 times row 4 to row 3 in each slice. We postmultiply S̃j

by the inverse of this transformation. Finally, to set the (1,4) entry of G
(j)
3 to zero,

we subtract t = −(i2/f2)(h3 − v3h2)/x times G
(j)
4 from G

(j)
3 , and postmultiply Ũj

by the inverse of this slicemix. This yields the initial value G̃j in (3.9) with i2 = 0,
which has the same pattern of zeros as the canonical form (3.3). It follows that our
starting values are

(3.10)

S
(0)
j = S̃j G̃

(j)
1

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 i2/f2
0 0 0 1

⎤⎥⎥⎦
−1

,

T
(0)
j = T̃j

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −i2/f2 1

⎤⎥⎥⎦
−1

.

The initial matrix U
(0)
j is obtained as U

(0)
j = Ũj M, with

M = M−1
1 M−1

2 M−1
3 M−1

4 M−1
5 M−1

6 ,

and
(3.11)

M1 =

⎡⎢⎢⎣
1 0 0 0

−u2 1 0 0
−u3 0 1 0
−u4 0 0 1

⎤⎥⎥⎦ , M2 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 −v3 1 0
0 −v4 0 1

⎤⎥⎥⎦ , M3 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −w 1

⎤⎥⎥⎦ ,

(3.12)

M4 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 −y2
0 0 1 −y3
0 0 0 1

⎤⎥⎥⎦ , M5 =

⎡⎢⎢⎣
1 0 0 0
0 1 −z 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , M6 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 −t
0 0 0 1

⎤⎥⎥⎦ .

It follows that U
(0)
j = Ũj M, with

(3.13) M =

⎡⎢⎢⎣
1 0 0 0
u2 1 z y2 + tz
u3 v3 1 + v3z v3y2 + y3 + t+ tv3z
u4 v4 v4z + w 1 + v4y2 + wy3 + tv4z + tw

⎤⎥⎥⎦ .

Step 5 of the algorithm is as in [53]. The ALS algorithm of [29] does not require the
compound matrices S,T,U to have full column rank R, nor to have more rows than
columns.
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4. Simulation study. Here, we demonstrate the method outlined in section 3
in a simulation study. For sizes 4 × 4 × 4, 10 × 4 × 4, 10 × 10 × 4, 10 × 10 × 10,
100 × 30 × 4, and 6 × 6 × 6, we generate 50 random arrays Z and use the CP ALS
algorithm to try to compute a best rank-R approximation of Z. For the first four
sizes we use R = 6. For the 100× 30× 4 arrays we use R = 8, and for the 6× 6 × 6
arrays we use R = 9. Hence, for five of the six sizes we have R > min(I, J,K), and
for the 4× 4× 4 and 6× 6× 6 arrays we even have R > max(I, J,K).

For each array, we run CP ALS 10 times with random starting values, and keep
the solution (A,B,C) with smallest error ||Z − Y||2. We use convergence criterion
1e-9 in CP ALS. If (A,B,C) features diverging rank-1 terms in groups of no more
than four rank-1 terms, then we apply our method to obtain the optimal boundary
point X and its decomposition in block terms X =

∑m
j=1(Sj ,Tj ,Uj) · Gj . We fit

this decomposition to Z as a constrained Tucker3 decomposition by using the ALS
algorithm of [29] with convergence criterion 1e-9. The groups of diverging rank-1
terms are identified by criterion (3.4) with critical value 0.90.

In Table 1 below, we report the frequencies of solutions with and without diverging
rank-1 terms, and also the sizes of the groups of diverging rank-1 terms. As can be
seen, diverging rank-1 terms occur for 84, 86, 84, 70, 84, and 94 percent of the arrays.
For each array size, a wide variety of number and sizes of groups of diverging rank-1
terms occurs.

Next, we apply our method to all cases of diverging rank-1 terms in Table 1
except those with a group of five or more diverging rank-1 terms. To evaluate the
performance of the method, we compare the error term ||Z − Y||2 (for the rank-R
sequence Y) to ||Z −X||2 (for the limit point X ). We report the maximal percentage
of relative error decrease

(4.1) diff = 100

( ||Z − Y||2 − ||Z − X||2
||Z − Y||2

)
.

Also, we consider the condition numbers of the matrices S,T,U in the decomposition
of the limit point X . We report the maximal condition number that occurred and
the number of times max(cond(S), cond(T), cond(U)) is larger than 100. Since the
limit point X is closer to Z than Y, we expect diff to be positive and small. Also, we
expect the condition numbers of S,T,U to be relatively small. For arrays Z where
diff is negative or condition numbers larger than 100 occur, we rerun the CP ALS
algorithm with 20 different random starting values, and again apply our method if
diverging rank-1 terms occur. After this procedure, four cases with diff < 0 and 19
cases with condition numbers larger than 100 still remained. The cases with diff < 0
could be resolved by either rerunning CP ALS or assigning a diverging rank-1 term
as nondiverging or vice versa. In 16 of the 19 cases with large condition numbers, the
triple cosine between two rank-1 terms not in the same (or any) group of diverging
rank-1 terms was relatively high (around 0.75 or 0.8). In six of these cases, rerunning
CP ALS resulted in a better solution with a different configuration of diverging rank-1
terms. In the other three of the 19 cases with large condition numbers (all 10× 4× 4

arrays), we discovered that the first slice G̃
(j)
1 of a core block G̃j with dj = 3 or dj = 4

in the block SGSD (step 3 of the algorithm in section 3), is nearly singular. We use

the nonsingularity of G̃
(j)
1 in the proofs of the canonical forms (3.2) and (3.3), and to

obtain initial values in step 4 of the algorithm. These three cases may have a different
decomposition of the limit X and are discarded.D
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Table 2

Results of applying the method outlined in section 3 to the cases of diverging rank-1 terms in
Table 1 with groups of no more than four diverging rank-1 terms. The columns contain the maximal
number of iterations needed for fitting the block term decomposition, the maximal percentage of
relative error decrease, the number of times at least one of S,T,U in the decomposition of the limit
point X has condition number larger than 100, and the maximal condition number. For each array
size, the results are split up for different sizes of the largest group of diverging rank-1 terms max(dj ).

I × J ×K R max(dj) max(iter) max(diff) #cond>100 max(cond) cases

4× 4× 4 6 2 9534 0.11 0 36.6 26
4× 4× 4 6 3 3373 0.48 1 115.6 13
4× 4× 4 6 4 9325 36.66 0 17.3 3

10 × 4× 4 6 2 5581 0.0063 3 310.8 27
10 × 4× 4 6 3 477 0.0067 0 17.7 8
10 × 4× 4 6 4 531 6.84 1 248.8 4

10× 10× 4 6 2 442 0.0017 2 347.6 24
10× 10× 4 6 3 598 0.0039 1 218.7 12
10× 10× 4 6 4 785 1.07 0 33.5 3

10× 10× 10 6 2 95 0.0012 3 125.3 21
10× 10× 10 6 3 139 0.0013 1 135.7 11
10× 10× 10 6 4 443 0.43 2 174.1 3

100 × 30 × 4 8 2 162 0.0006 1 104.5 27
100 × 30 × 4 8 3 108 0.0011 1 107.4 10
100 × 30 × 4 8 4 96 0.0186 0 29.6 3

6× 6× 6 9 2 4386 0.0282 2 298.2 21
6× 6× 6 9 3 3037 0.0269 2 284.4 17
6× 6× 6 9 4 932 4.35 0 41.1 5

The results of applying our method to the cases in Table 1 are given in Table 2.
Apart from diff and condition numbers, we also report the maximal number of it-
erations needed by the ALS algorithm to fit the constrained Tucker3 decomposition
(step 5 of the algorithm outlined in section 3.1). As can be seen, the algorithm does
not need excessively many iterations. The values of diff are all positive and relatively
small, except for some cases with dj = 4. Hence, in all cases the boundary point X
is closer to Z than Y, which is evidence that X is indeed an optimal boundary point.
In almost all cases, the rank-R array Y is very close to the optimal boundary point
X . However, some groups of four diverging rank-1 terms seem to converge to their
limit at a slower rate than groups of two or three diverging rank-1 terms, at least
when using CP ALS. The number of cases with condition numbers larger than 100 is
limited to 20, and the maximal condition numbers are not excessively large.

An anonymous reviewer suggested checking numerically whether the canonical
forms for dj = 3 and dj = 4 indeed have the minimal number of nonzero entries. For
these cases in Table 2, we fitted a decomposition (Sj ,Tj ,Uj) · Gj to the limit Xj of
the dj ∈ {3, 4} diverging rank-1 terms, where Gj is equal to the canonical form (3.2)
or (3.3) with one nonzero entry set to zero. For dj = 4, we set either the (1,2,2) or
the (1,3,3) entry to zero. For dj = 3, we set the (2,3,2) entry to zero. For dj = 4,
fitting Xj ≈ (Sj ,Tj ,Uj) · Gj results in an error sum of squares of at least 0.52. There
is one 6× 6× 6 array with error 0.02, but this is an outlier. For dj = 3, we obtain an
error sum of squares of at least 0.61. Hence, it seems that the canonical forms (3.2)
and (3.3) indeed have the minimal amount of nonzero entries.

The results of the simulation study demonstrate that our method works well for
arrays of different sizes, and with R > min(I, J,K) but max(dj) ≤ min(I, J,K). Also,
the results validate our Assumptions 1 and 2 in all but three cases.
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642 ALWIN STEGEMAN

Compared to the simulation study in [53] for R ≤ min(I, J,K) and max(dj) ≤ 3,
the values of diff are slightly larger for dj ∈ {2, 3}, and the numbers of iterations to
fit the decomposition in block terms are larger. Also, in [53] no cases of diff < 0 were
encountered. This indicates that cases with R > min(I, J,K) and/or dj = 4 provide
a bigger numerical challenge.

5. Discussion. In this paper, we have extended the method of [53] to obtain the
limit point X of a sequence of rank-R updates with diverging rank-1 terms. Under
the assumption of nonexistence of a best rank-R approximation of the data array Z,
the limit point X is a boundary point of the set of rank-R arrays, has rank larger
than R, and is closest to the data array Z of all (boundary) points in the rank-R
set. As in [53], we obtain X by fitting a decomposition in block terms to Z, where
the initial values are obtained from the configuration of diverging rank-1 terms of
the approximating sequence of rank-R updates. In [53], the method is restricted to
R ≤ min(I, J,K) and max(dj) ≤ 3, where d1, . . . , dm are the sizes of the groups of
(non)diverging rank-1 terms. We have proposed and demonstrated an extension to
R > min(I, J,K), max(dj) ≤ min(I, J,K), and max(dj) ≤ 4. We conjecture that
canonical forms like (3.3) for dj = 4 can be proven for dj ≥ 5 analogous to the proof
of Lemma 3.3.

Nonexistence of a best rank-R approximation can be avoided by imposing con-
straints on the rank-1 terms in (A,B,C). Imposing orthogonality constraints on (one
of) the component matrices guarantees existence of a best rank-R approximation [32],
and the same is true for nonnegative Z under the restriction of nonnegative compo-
nent matrices [38]. Also, [39] show that constraining the magnitude of the inner
products between pairs of columns of component matrices guarantees existence of a
best rank-R approximation. When these constraints are not suitable and diverging
rank-1 terms are encountered, obtaining the limit point of the sequence of rank-R
updates is the best one can hope for.

Not in all applications of low-rank tensor approximations are diverging rank-1
terms considered a problem. For example, in algebraic complexity theory the arbi-
trarily close approximation of X by another array of lower rank is used for fast and
arbitrarily accurate matrix multiplication [3] [4]; see [49, section 1.2] for a discussion.

Theoretically, we have shown that the phenomenon of diverging rank-1 terms
due to nonexistence of a best rank-R approximation can be seen as a three-way
generalization of approximate diagonalization of a nondiagonalizable matrix. In the
latter problem, the approximating sequence of diagonalizable matrices converges to
a nondiagonalizable boundary point X and exhibits diverging rank-1 terms. The
boundary point X satisfies the real Jordan canonical form X = PJP−1, with J =
blockdiag(J1, . . . ,Jm) and each Jordan block Jj being the limit of a group of di-
verging rank-1 terms. Analogously, the boundary point X that is the limit of the
approximating sequence of rank-R updates, satisfies a decomposition in block terms
X = (S,T,U) · G, with G = blockdiag(G1, . . . ,Gm) and each block Gj in sparse
canonical form being the limit of a group of diverging rank-1 terms. As such, this de-
composition in block terms is a three-way generalization of the real Jordan canonical
form for matrices.

For a matrix with real eigenvalues, the real Jordan canonical form can be ob-
tained by computing the algebraic multiplicities of the eigenvalues and analyzing
their eigenspaces [26, section 3.2]. For three-way and n-way arrays, eigenvalues and
eigenvectors have also been defined [43] [37]. However, we have not found a clear con-
nection between our three-way generalization of the Jordan canonical form and these
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notions of eigenvectors for three-way arrays. We do have the following analogy of the
dj identical real eigenvalues and only one associated eigenvector of a Jordan block
Jj . From Lemma 3.1, the proof of Lemma 3.2 in [53], and the proof of Lemma 3.3
in the appendix, we can conclude the following. Let the limit point Xj have SGSD

decomposition Xj = (Sj ,Tj ,Uj) · G̃j , where G̃j has size dj × dj × dj , upper triangular
frontal slices, and first slice equal to Idj . Then in almost all cases, each frontal slice of

G̃j has dj identical real eigenvalues, and the same single associated eigenvector [56].
Note that not all properties of a two-way matrix decomposition need to generalize

to a three-way decomposition. For example, the generalization of the singular value
decomposition to n-way arrays by [15] features orthogonal “singular vectors” in three
modes, has a relation to the mode-j ranks of the array, and an ordered set of “singular
values” can be defined. However, there is no relation with the rank of the array, nor
with diagonalization. The latter two are properties of the rank-R decomposition, but
here the rank-1 terms are not ordered, and there are no orthogonal vectors.

Appendix A. Before presenting the proof of Lemma 3.3, we formulate two lem-
mas. These results are needed in section 3.2 and in the proof of Lemma 3.3.

Lemma A.1. Let dj ≤ min(I, J,K), and Yj = (S̃j , T̃j , Ũj) · G̃j with columnwise

orthonormal S̃j (I×dj), T̃j (J×dj), and Ũj (K×dj). Then Yj ∈ Sdj (I, J,K) if and

only if G̃j ∈ Sdj (dj , dj , dj), and Yj ∈ Sdj (I, J,K) if and only if G̃j ∈ Sdj (dj , dj , dj).

Moreover, the representation exists for any Yj ∈ Sdj (I, J,K) and any Yj ∈ Sdj (I, J,K),

and we may take S̃j = Idj if dj = I, T̃j = Idj if dj = J , and Ũj = Idj if dj = K.
Proof. See [17, Theorem 5.2].
Lemma A.2. For dj ≤ min(I, J,K) and Yj ∈ Sdj(I, J,K), it holds that Yj =

(S̃j , T̃j , Ũj) · G̃j for some S̃j, T̃j, Ũj columnwise orthonormal, and some G̃j ∈
Sdj(dj , dj , dj) with all frontal slices upper triangular. Moreover, Yj ∈ Sdj(I, J,K)

if and only if G̃j ∈ Sdj(dj , dj , dj).
Proof. See [53, Lemma 3.2(b)].

Proof of Lemma 3.3. By Lemma A.2, there exist columnwise orthonormal S̃j , T̃j ,

Ũj such that Xj = (S̃j , T̃j , Ũj) · G̃j with G̃j ∈ S4(4, 4, 4) having all frontal slices upper

triangular. By assumption, G̃j has multilinear rank (4, 4, 4). Also, we have rank(Xj) =

rank(G̃j) > 4. We assume that G̃j has a nonsingular slicemix, i.e., (I3, I3,U) · Gj has

a nonsingular frontal slice for some nonsingular U. This is true for almost all G̃j . In

fact, if G̃j does not have a nonsingular slicemix, then its upper triangular slices have

a zero on their diagonals in the same position. We apply a slicemix to G̃j such that

its first slice is nonsingular. Next, we premultiply the slices of G̃j by the inverse of its

first slice. Then G̃j = [G̃
(j)
1 | G̃(j)

2 | G̃(j)
3 | G̃(j)

4 ] is of the form

(A.1)

⎡⎢⎢⎣
1 0 0 0 a2 e2 h2 j2 a3 e3 h3 j3 a4 e4 h4 j4
0 1 0 0 0 b2 f2 i2 0 b3 f3 i3 0 b4 f4 i4
0 0 1 0 0 0 c2 g2 0 0 c3 g3 0 0 c4 g4
0 0 0 1 0 0 0 d2 0 0 0 d3 0 0 0 d4

⎤⎥⎥⎦ .

We assume that the upper triangular entries of the last three slices of G̃j are nonzero.

This holds for almost all G̃j . By assumption, there exists a sequence Y(n) in S4(I, J,K)

converging to Xj . This implies that (S̃T
j , T̃

T
j , Ũ

T
j ) · Y(n) converges to (S̃T

j , T̃
T
j , Ũ

T
j ) ·

Xj = G̃j . Without loss of generality, in the remaining part of the proof we consider
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a sequence Y(n) in S4(4, 4, 4) converging to G̃j , where Y(n) features four diverging
rank-1 terms.

Since a matrix cannot be approximated arbitrarily well by a matrix of lower
rank, it follows that the approximating sequence Y(n) in S4(4, 4, 4) has multilinear
rank (4, 4, 4) and a nonsingular slicemix for n large enough. Moreover, by Lemma A.2
we may assume without loss of generality that Y(n) has the form (A.1). We denote

the entries of Y(n) with superscript n, i.e., a
(n)
p , . . . , j

(n)
p for p = 2, 3, 4. Hence, Y(n) =

[Y
(n)
1 |Y(n)

2 |Y(n)
3 |Y(n)

4 ] equals
(A.2)⎡⎢⎢⎢⎣
1 0 0 0 a

(n)
2 e

(n)
2 h

(n)
2 j

(n)
2 a

(n)
3 e

(n)
3 h

(n)
3 j

(n)
3 a

(n)
4 e

(n)
4 h

(n)
4 j

(n)
4

0 1 0 0 0 b
(n)
2 f

(n)
2 i

(n)
2 0 b

(n)
3 f

(n)
3 i

(n)
3 0 b

(n)
4 f

(n)
4 i

(n)
4

0 0 1 0 0 0 c
(n)
2 g

(n)
2 0 0 c

(n)
3 g

(n)
3 0 0 c

(n)
4 g

(n)
4

0 0 0 1 0 0 0 d
(n)
2 0 0 0 d

(n)
3 0 0 0 d

(n)
4

⎤⎥⎥⎥⎦ .

The proof consists of showing that a nonsingular N exists such that the slicemix
Gj = (I4, I4,N) · G̃j is of the canonical form (3.3).

First, we consider the rank-4 decomposition (A(n),B(n),C(n)) of Y(n), which can

be written as in (1.13): Y
(n)
p = A(n) C

(n)
p (B(n))T , where diagonal matrixC

(n)
p has row

p of C(n) as its diagonal, p = 1, 2, 3, 4. Since Y
(n)
1 = I3, matrices A(n) and B(n) are

nonsingular. Without loss of generality, we set C
(n)
1 = I3. Then (A(n))−1 = (B(n))T

and Y
(n)
p = A(n) C

(n)
p (A(n))−1 for p = 2, 3, 4. Hence, slices Y

(n)
2 ,Y

(n)
3 ,Y

(n)
4 have the

same eigenvectors. Moreover, their three eigenvectors are linearly independent, and

their eigenvalues are on the diagonals of C
(n)
2 ,C

(n)
3 ,C

(n)
4 , respectively. Since Y

(n)
p has

eigenvalues a
(n)
p , b

(n)
p , c

(n)
p , d

(n)
p , p = 2, 3, 4, we obtain

(A.3) C(n) =

⎡⎢⎢⎢⎣
1 1 1 1

a
(n)
2 b

(n)
2 c

(n)
2 d

(n)
2

a
(n)
3 b

(n)
3 c

(n)
3 d

(n)
3

a
(n)
4 b

(n)
4 c

(n)
4 d

(n)
4

⎤⎥⎥⎥⎦ .

Next, we show that in the limit ap = bp = cp = dp for p = 2, 3, 4. We only consider
p = 2. The proof for p = 3, 4 is completely analogous. From Krijnen, Dijkstra, and
Stegeman [32] we know that A(n), B(n), and C(n) converge to matrices with ranks

less than 4. The eigendecomposition Y
(n)
2 = A(n) C

(n)
2 (A(n))−1 converges to frontal

slice G̃2 of G̃. Hence, the eigenvectors in A(n) converge to those of G̃2. Suppose A
(n)

has a rank-1 limit. Then G̃2 has only one eigenvector and four identical eigenvalues.
Hence, a2 = b2 = c2 = d2. For an eigenvalue λ of G̃2, we define the eigenspace

(A.4) E(λ) = {x ∈ R
4 : G̃2x = λx} .

It holds that λ1 
= λ2 implies E(λ1) ∩E(λ2) = {0}. Suppose A(n) has a rank-2 limit
A = [a1 a2 a3 a4], where the columns are eigenvectors associated with eigenvalues
a2, b2, c2, d2, respectively. Without loss of generality, we assume a3, a4 ∈ span{a1, a2},
with a1 and a2 linearly independent. Suppose a2 = b2. Then a4 ∈ E(d2) ∩ E(a2),
which implies a2 = d2. Analogously, a3 ∈ E(c2) ∩ E(a2) implies a2 = c2. Hence,
we obtain a2 = b2 = c2 = d2. Next, suppose a2 
= b2. Because rank(A) = 2, we
have at most two distinct eigenvalues. If c2 = a2 
= b2 = d2, then a1 and a3 are
proportional and a2 and a4 are proportional. Hence, this is a case of two groups of
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two diverging rank-1 terms, and not one group of four diverging rank-1 terms. If
a2 
= b2 = c2 = d2, then a2, a3, a4 are proportional, and we have a group of three
diverging rank-1 terms only (i.e., large numbers in three columns of B(n) = (A(n))−T

only). Other possibilities for a2 
= b2 and rank(A) = 2 are analogous. It follows that
if rank(A) = 2, then a2 = b2 = c2 = d2.

Next, let rank(A) = 3. Without loss of generality, we assume a4 ∈ span{a1, a2, a3},
with a1, a2, a3 linearly independent. Suppose a2 = b2 = c2. Then a4 ∈ E(d2)∩E(a2),
which implies a2 = d2, and yields the desired result. Next, suppose a2 = b2 
= c2. If
d2 = a2, then we have a group of at most three diverging rank-1 terms. If d2 = c2,
then a3 and a4 are proportional, and we have a group of two diverging rank-1 terms
only. If d2 
= a2 and d2 
= c2, then rank(A) = 4 which is not possible. Next, suppose
that a2, b2, c2 are distinct. Then d2 must be equal to one of them. Let d2 = a2. Then
a1 and a4 are proportional, and we have a group of two diverging rank-1 terms only.
Other possibilities for the equality of some eigenvalues can be treated analogously. It
follows that if rank(A) = 3, then a2 = b2 = c2 = d2.

Hence, we have shown that in the limit ap = bp = cp = dp for p = 2, 3, 4. This
implies that C(n) in (A.3) converges to a rank-1 limit.

As Y(n) → Gj , we first assume that the eigenvalues a
(n)
p , b

(n)
p , c

(n)
p , d

(n)
p are distinct,

p = 2, 3, 4. It can be verified that the eigenvectors A(n) of Y
(n)
p associated with

eigenvalues a
(n)
p , b

(n)
p , c

(n)
p , d

(n)
p are, respectively,

(A.5) A(n) =

⎡⎢⎢⎣
1 1 1 1
0 u(n) v(n) x(n)

0 0 w(n) y(n)

0 0 0 z(n)

⎤⎥⎥⎦ ,

with

u(n) =
(b

(n)
p − a

(n)
p )

e
(n)
p

, v(n) =
f
(n)
p (c

(n)
p − a

(n)
p )

e
(n)
p f

(n)
p + h

(n)
p (c

(n)
p − b

(n)
p )

,(A.6)

w(n) =
(c

(n)
p − a

(n)
p )(c

(n)
p − b

(n)
p )

e
(n)
p f

(n)
p + h

(n)
p (c

(n)
p − b

(n)
p )

,(A.7)

x(n) =
f
(n)
p g

(n)
p (d

(n)
p − a

(n)
p ) + i

(n)
p (d

(n)
p − a

(n)
p )(d

(n)
p − c

(n)
p )

denom(n, p)
,(A.8)

y(n) =
g
(n)
p (d

(n)
p − a

(n)
p )(d

(n)
p − b

(n)
p )

denom(n, p)
,(A.9)

z(n) =
(d

(n)
p − a

(n)
p )(d

(n)
p − b

(n)
p )(d

(n)
p − c

(n)
p )

denom(n, p)
,

and

denom(n, p) = e(n)p f (n)
p g(n)p + e(n)p i(n)p (d(n)p − c(n)p ) + h(n)

p g(n)p (d(n)p − b(n)p )

+ j(n)p (d(n)p − b(n)p )(d(n)p − c(n)p ) .

Recall that the eigenvectorsA(n) are identical for p = 2, 3, 4. Next, we show that in the
limit the vectors (ep, fp, gp) are proportional for p = 2, 3, 4. We prove proportionality
only for the vectors with p = 2 and p = 3. The full proof is completely analogous. We
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write A(n) in terms of p = 3 and compute Y
(n)
2 = A(n) C

(n)
2 (A(n))−1, which yields

(A.10)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(n)
2 e

(n)
3

(
a
(n)
2 −b

(n)
2

a
(n)
3 −b

(n)
3

)
U (n) W (n)

0 b
(n)
2 f

(n)
3

(
b
(n)
2 −c

(n)
2

b
(n)
3 −c

(n)
3

)
V (n)

0 0 c
(n)
2 g

(n)
3

(
c
(n)
2 −d

(n)
2

c
(n)
3 −d

(n)
3

)
0 0 0 d

(n)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that the entries in this matrix equal those of Y
(n)
2 in (A.2). This yields, after

rewriting, the following expressions for U (n) and V (n):

U (n) =
h
(n)
3 (c

(n)
2 − a

(n)
2 ) + (e

(n)
3 f

(n)
2 − f

(n)
3 e

(n)
2 )

(c
(n)
3 − a

(n)
3 )

= h
(n)
2 → h2 ,

V (n) =
i
(n)
3 (d

(n)
2 − b

(n)
2 ) + (f

(n)
3 g

(n)
2 − g

(n)
3 f

(n)
2 )

(d
(n)
3 − b

(n)
3 )

= i
(n)
2 → i2 .

We know that ap = bp = cp = dp for p = 2, 3, 4. Hence, the denominators of U (n) and
V (n) converge to zero, and also their numerators must converge to zero. This implies
that e3f2 = f3e2 and f3g2 = g3f2. Therefore, the vectors (ep, fp, gp) are proportional

for p = 2, 3 when f2f3 
= 0, which holds for almost all G̃j .

So far, we have shown that for G̃j in (A.1), ap = bp = cp = dp for p = 2, 3, 4, and
that the vectors (ep, fp, gp) are proportional for p = 2, 3, 4. We subtract ap times the

first slice of G̃j from slice p to obtain an all-zero diagonal in slice p, for p = 2, 3, 4.
Next, we subtract ep/e2 times the second slice from slice p, for p = 3, 4. Then we

obtain the following for the last three slices of G̃j :
(A.11)⎡⎢⎢⎣

0 e2 h2 j2 0 0 h3 − αh2 j3 − α j2 0 0 h4 − β h2 j4 − β j2
0 0 f2 i2 0 0 0 i3 − α i2 0 0 0 i4 − β i2
0 0 0 g2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎦ ,

where α = e3/e2 and β = e4/e2. Below, we show that the vectors (h3−αh2 , i3−αi2)
and (h4 − βh2 , i4 − βi2) are proportional. This implies that subtracting (h4 −
βh2)/(h3 − αh2) times slice three from slice four sets the (1,3) and (2,4) entries of
slice four equal to zero. Slice four then only has its (1,4) entry nonzero (which we
normalize to one), and can be used to set the (1,4) entries of slices two and three
equal to zero. Next, slice three can be used to set the (1,3) entry of slice two equal
to zero. This yields the form

(A.12)

⎡⎢⎢⎣
1 0 0 0 0 e2 0 0 0 0 h̃3 0 0 0 0 1

0 1 0 0 0 0 f2 ĩ2 0 0 0 ĩ3 0 0 0 0
0 0 1 0 0 0 0 g2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎦ ,

with h̃3 = h3 − αh2, ĩ3 = i3 − α i2, and ĩ2 = i2 − h2ĩ3/h̃3. In each slice of (A.12), we
subtract ĩ2/f2 times column 3 from column 4. After this, we add ĩ2/f2 times row 4
to row 3 in each slice. We then obtain canonical form (3.3) except for a nonzero entry
(1,4) in slice three. The latter can be removed by using slice four as above.
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Now we show that (h3−αh2 , i3−αi2) and (h4−βh2 , i4−βi2) are proportional
in (A.11). The expression for W (n) in (A.10) equals (after rewriting)
(A.13)

W (n) =
j
(n)
3 (d

(n)
2 − a

(n)
2 ) + e

(n)
3 i

(n)
2 − e

(n)
2 i

(n)
3 + h

(n)
3 g

(n)
2 − g

(n)
3 h

(n)
2

(d
(n)
3 − a

(n)
3 )

= j
(n)
2 → j2 .

As above, it follows that e3i2− e2i3+h3g2− g3h2 = 0 in the limit. We write e3 = αe2
and (due to proportionality of (ep, fp, gp) for p = 2, 3, 4) g3 = αg2, and obtain

(A.14) i3 =
e3i2 + h3g2 − g3h2

e2
= α i2 + (g2/e2) (h3 − αh2) .

Analogously, when writing A(n) in terms of p = 4 and computing

Y
(n)
2 = A(n) C

(n)
2 (A(n))−1,

we obtain that e4i2 − e2i4 + h4g2 − g4h2 = 0 in the limit. We write e4 = βe2 and
g4 = βg2, and obtain

(A.15) i4 =
e4i2 + h4g2 − g4h2

e2
= β i2 + (g2/e2) (h4 − β h2) .

From (A.14) and (A.15) it follows that i3 − αi2 = (g2/e2)(h3 − αh2) and i4 − βi2 =
(g2/e2)(h4 − βh2). Hence, we have shown that the vectors (h3 − αh2 , i3 − αi2) and
(h4 − βh2 , i4 − βi2) are proportional.

It remains to consider the cases where the eigenvalues a
(n)
p , b

(n)
p , c

(n)
p , d

(n)
p of Y

(n)
p

are not distinct, p = 2, 3, 4. Below, we show that such cases can be left out of
consideration. We only consider p = 2. The cases p = 3 and p = 4 are completely

analogous. If a
(n)
2 = b

(n)
2 for n large enough, then we must have e

(n)
2 = 0 to obtain

four linearly independent eigenvectors of Y
(n)
2 . This is due to the upper triangular

form of Y
(n)
2 in (A.2). This implies that e2 = 0 in the limit, which does not hold for

almost all G̃j . Analogously, it can be shown that equality of some of the eigenvalues

a
(n)
2 , b

(n)
2 , c

(n)
2 , d

(n)
2 for n large enough implies restrictions on the limit G̃j which do not

hold for almost all G̃j . In particular, we have the following implications:

a
(n)
2 = b

(n)
2 =⇒ e2 = 0 ,

a
(n)
2 = c

(n)
2 =⇒ e2f2 + h2 (c2 − b2) = 0 ,

a
(n)
2 = d

(n)
2 =⇒ e2f2g2 + e2i2 (d2 − c2) + h2g2 (d2 − b2)

+ j2 (d2 − b2)(d2 − c2) = 0 ,

b
(n)
2 = c

(n)
2 =⇒ f2 = 0 ,

b
(n)
2 = d

(n)
2 =⇒ f2g2 + i2 (d2 − c2) = 0 ,

c
(n)
2 = d

(n)
2 =⇒ g2 = 0 ,

a
(n)
2 = b

(n)
2 = c

(n)
2 =⇒ e2 = f2 = h2 = 0 ,

a
(n)
2 = b

(n)
2 = d

(n)
2 =⇒ e2 = 0, f2g2 + i2 (d2 − c2) = 0, h2g2 + j2 (d2 − c2) = 0 ,

a
(n)
2 = c

(n)
2 = d

(n)
2 =⇒ g2 = 0, e2f2 + h2 (c2 − b2) = 0, e2i2 + j2 (c2 − b2) = 0 ,

b
(n)
2 = c

(n)
2 = d

(n)
2 =⇒ f2 = i2 = g2 = 0 ,

a
(n)
2 = b

(n)
2 = c

(n)
2 = d

(n)
2 =⇒ e2 = f2 = g2 = h2 = i2 = j2 = 0 .
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Finally, we prove that rank(Gj) ≥ 7 when Gj equals (3.3). As [40], we use [34,
Corollary 1′, p. 108], which implies

(A.16) rank(Gj) ≥ min
u�=0,v,w,x

(rank(uG
(j)
1 +vG

(j)
2 +wG

(j)
3 +xG

(j)
3 ))+rank3(Gj)−1 ,

with rank3(Gj) denoting the mode-3 rank of Gj . Using (3.3) yields rank(Gj) ≥ 4+4−
1 = 7.

Acknowledgment. The author would like to thank Lieven De Lathauwer for
providing the first half of the proof of Theorem 1.1(ii).
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